Suppr超能文献

一种人工智能数字病理学算法可根据前列腺、肺、结直肠和卵巢癌试验预测根治性前列腺切除术后的生存率。

An Artificial Intelligence-Digital Pathology Algorithm Predicts Survival After Radical Prostatectomy From the Prostate, Lung, Colorectal, and Ovarian Cancer Trial.

作者信息

Li Eric V, Ren Yi, Griffin Jacqueline, Han Jialin, Yamashita Rikiya, Mitani Akinori, Zhou Ruoji, Huang Huei-Chung, Yang Ximing, Feng Felix Y, Esteva Andre, Patel Hiten D, Schaeffer Edward M, Cooper Lee A D, Ross Ashley E

机构信息

Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.

Artera, Inc, Los Altos, California.

出版信息

J Urol. 2025 May;213(5):600-608. doi: 10.1097/JU.0000000000004435. Epub 2025 Jan 22.

Abstract

PURPOSE

Clinical variables alone have limited ability to determine which patients will have recurrence after radical prostatectomy (RP). We evaluated the ability of locked multimodal artificial intelligence (MMAI) algorithms trained on prostate biopsy specimens to predict prostate cancer-specific mortality (PCSM) and overall survival (OS) among patients undergoing RP with digitized RP specimens.

MATERIALS AND METHODS

The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Randomized Controlled Trial randomized subjects from 1993 to 2001 to cancer screening or control. A subset of patients who underwent RP with available digitized histopathological images and subsequent survival data were identified. Distant metastasis (DM) and PCSM MMAIs originally trained on biopsy slides for patients undergoing radiation were evaluated for prediction of PCSM and OS. Cox proportional hazards modeling and Kaplan-Meier survival curve analysis were used.

RESULTS

In total, 1032 patients who underwent RP with median follow-up of 17 years (IQR, 14.3, 19.3 years) were identified. MMAI algorithms for PCSM and DM both predicted PCSM (HR, 2.31, 95% CI, 1.6-3.35, < .001 and HR, 1.96, 95% CI, 1.35-2.85, < .001, respectively). Similarly, DM and PCSM MMAI predicted OS (HR, 1.22, 95% CI, 1.01-1.47, = .04 and HR, 1.19, 95% CI, 1.02-1.4, = .03).

CONCLUSIONS

Locked MMAI algorithms previously developed and validated on biopsy specimens from patients undergoing radiation for prostate cancer successfully predicted clinical outcomes when applied to RP specimens from patients treated with surgery. MMAI models and other biomarkers may help select patients who may benefit from postoperative treatment intensification with androgen deprivation therapy or radiation.

摘要

目的

仅靠临床变量来确定哪些患者在根治性前列腺切除术(RP)后会复发的能力有限。我们评估了基于前列腺活检标本训练的锁定多模态人工智能(MMAI)算法预测接受RP且有数字化RP标本患者的前列腺癌特异性死亡率(PCSM)和总生存期(OS)的能力。

材料与方法

前列腺、肺、结直肠和卵巢癌筛查随机对照试验在1993年至2001年将受试者随机分为癌症筛查组或对照组。确定了一部分接受RP且有可用数字化组织病理学图像及后续生存数据的患者。评估最初在接受放疗患者的活检玻片上训练的远处转移(DM)和PCSM MMAI对PCSM和OS的预测能力。使用Cox比例风险模型和Kaplan-Meier生存曲线分析。

结果

总共确定了1032例接受RP的患者,中位随访时间为17年(四分位间距,14.3,19.3年)。PCSM和DM的MMAI算法均能预测PCSM(HR分别为2.31,95%CI为1.6 - 3.35,P <.001和HR为1.96,95%CI为1.35 - 2.85,P <.001)。同样,DM和PCSM MMAI能预测OS(HR分别为1.22,95%CI为1.01 - 1.47,P =.04和HR为1.19,95%CI为1.02 - 1.4,P =.03)。

结论

先前基于前列腺癌放疗患者活检标本开发并验证的锁定MMAI算法,应用于手术治疗患者的RP标本时能成功预测临床结局。MMAI模型和其他生物标志物可能有助于选择可能从雄激素剥夺治疗或放疗的术后强化治疗中获益的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验