Liu Junlei, Chen Yusheng, Zhou Zhiqiang, Hou Weiwei, Tang Dianyu, Noori Abolhassan, Chi Wentao, Liu Yihu, Wang Chenze, Han Bingbing, Mousavi Mir F, Zhang Cheng
International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
Zhejiang Harog Technology Co., Ltd., Huzhou 313100, P.R. China.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):7821-7829. doi: 10.1021/acsami.4c19721. Epub 2025 Jan 22.
Poly(ethylene oxide) (PEO) has been widely studied as an electrolyte owing to its excellent lithium compatibility and good film-forming properties. However, its electrochemical performance at room temperature remains a significant challenge due to its low ionic conductivity, narrow electrochemical window, and continuous decomposition. Herein, we prepare a multifunctional polar polymer to optimize PEO's electrochemical properties and cycling stability. PEO's crystallinity is disrupted with the addition of polar polymer, and the amorphous polymer segments create more transfer pathways for Li-ion. More importantly, the polar groups enhance PEO's Li-ion transference number by facilitating lithium salt dissociation through Lewis acid-base interactions and weaken the coordination between Li-ion and ether oxygen, thereby expediting Li-ion migration. In addition, the trifluoromethyl groups promote TFSI defluorination, forming LiF-rich solid electrolyte interphase layers that prevent continuous decomposition of PEO. The resulting composite electrolyte exhibits excellent room temperature ionic conductivity (2.06 × 10 S cm) and Li-ion transference number (0.30) and outstanding voltage (4.9 V). The assembled symmetric lithium battery could perform stably for 620 h at 0.1 mA cm. Li||LiFePO cells exhibit excellent capacity retention (87.81%) and Coulombic efficiency (100.0%) at 0.5 C over 700 cycles.
聚环氧乙烷(PEO)因其优异的锂兼容性和成膜性能而被广泛研究作为电解质。然而,由于其低离子电导率、窄电化学窗口和持续分解,其在室温下的电化学性能仍然是一个重大挑战。在此,我们制备了一种多功能极性聚合物以优化PEO的电化学性能和循环稳定性。通过添加极性聚合物破坏了PEO的结晶度,无定形聚合物链段为锂离子创造了更多的传输途径。更重要的是,极性基团通过路易斯酸碱相互作用促进锂盐解离来提高PEO的锂离子迁移数,并削弱锂离子与醚氧之间的配位,从而加速锂离子迁移。此外,三氟甲基促进双(三氟甲基磺酰)亚胺(TFSI)脱氟,形成富含LiF的固体电解质界面层,防止PEO持续分解。所得复合电解质表现出优异的室温离子电导率(2.06×10⁻³ S cm⁻¹)和锂离子迁移数(0.30)以及出色的电压(4.9 V)。组装的对称锂电池在0.1 mA cm⁻²下可稳定运行620 h。Li||LiFePO₄电池在0.5 C下经过700次循环表现出优异的容量保持率(87.81%)和库仑效率(100.0%)。