Cui Hao, Hu Jian, Jiang Xiaoping, Zhang Xiaoxing
College of Artificial Intelligence, Southwest University, Chongqing, 400715, China; Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Sichuan, 610065, China.
Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Sichuan, 610065, China.
Environ Res. 2025 Mar 15;269:120843. doi: 10.1016/j.envres.2025.120843. Epub 2025 Jan 20.
In this first-principles study, we simulate the adsorption of SOF and SOF molecules on the pristine, Cu- and Rh-doped PdSe monolayer, in order to explore their potentials as novel gas sensors for status evaluation of the SF-insulation devices. Single Cu or Rh atom is doped by the replacement of a Se atom within the PdSe surface, with the formation energy of 0.40 and -0.62 eV, respectively. Compared with the weak interactions between the pristine PdSe monolayer and two gas species with little potential for gas sensing application, Cu-PdSe monolayer behaves stronger physisorption and Rh-PdSe monolayer conduct more favorable chemisorption upon two gases. The adsorption characteristic, charge density difference, band structure and density of states of various adsorption configurations are systemically analyzed to understand the gas-surface interactions. Results indicate that Pd-PdSe monolayer, rather than the Cu-doped counterpart, is a promising resistive gas sensor with good sensitivity and selectivity for detection of SOF and SOF. The analysis of work function in gas adsorbed Cu- and Rh-PdSe systems reveals their strong potential for the development of Schottky gas sensors upon two gases with high and tunable sensitivity and specificity. These findings in this work hold significant meanings for typical gas detection to evaluate the operational status of SF-insulated devices. It is hopeful that this work can stimulate more edge-cutting investigations on the PdSe-based gas sensor for application in some other fields.
在这项第一性原理研究中,我们模拟了SOF和SOF分子在原始的、铜掺杂和铑掺杂的PdSe单层上的吸附,以探索它们作为用于评估SF绝缘设备运行状态的新型气体传感器的潜力。通过替换PdSe表面的一个Se原子来掺杂单个Cu或Rh原子,形成能分别为0.40和-0.62 eV。与原始PdSe单层和两种气体之间微弱的相互作用(几乎没有气体传感应用潜力)相比,Cu-PdSe单层表现出更强的物理吸附,而Rh-PdSe单层对两种气体表现出更有利的化学吸附。系统地分析了各种吸附构型的吸附特性、电荷密度差、能带结构和态密度,以了解气体-表面相互作用。结果表明,Pd-PdSe单层而非铜掺杂的对应物是一种有前途的电阻式气体传感器,对检测SOF和SOF具有良好的灵敏度和选择性。对吸附气体的Cu-和Rh-PdSe系统的功函数分析表明,它们在开发具有高灵敏度和可调特异性的两种气体的肖特基气体传感器方面具有很大潜力。这项工作中的这些发现对于评估SF绝缘设备运行状态的典型气体检测具有重要意义。有望这项工作能够激发更多关于基于PdSe的气体传感器在其他一些领域应用的前沿研究。