Suppr超能文献

季铵化壳聚糖功能化介孔二氧化硅纳米粒子:一种用于治疗细胞内耐甲氧西林金黄色葡萄球菌感染的有前景的靶向给药系统。

Quaternary ammonium chitosan-functionalized mesoporous silica nanoparticles: A promising targeted drug delivery system for the treatment of intracellular MRSA infection.

作者信息

Liu Junfeng, Zhang Liying, Ma Haodi, Sun Haoyang, Ge Shu-Ai, Liu Jieyi, Fan Shengdi, Quan Chunshan

机构信息

Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China.

Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China.

出版信息

Carbohydr Polym. 2025 Mar 15;352:123184. doi: 10.1016/j.carbpol.2024.123184. Epub 2024 Dec 24.

Abstract

The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake. The findings indicate that MSN-NH-CFP@HACC nanoparticles are efficiently internalized by macrophages, demonstrate accelerated drug release in acidic environments, and exhibit enhanced antibacterial properties, effectively suppressing the proliferation and intracellular escape of MRSA. Moreover, HACC enhances the bacterial capture ability of the nanoparticles and reduces resistance by disrupting bacterial membrane structures and inhibiting bacterial β-lactamase activity. In a murine model of MRSA bacteremia, MSN-NH-CFP@HACC exhibited remarkable antibacterial efficacy and significantly attenuated severe inflammatory responses. In conclusion, MSN-NH-CFP@HACC represent a promising antibiotic delivery system with exceptional antibacterial efficacy and favorable biocompatibility, thus presenting a novel strategy for addressing intracellular drug-resistant bacterial infections and demonstrating significant potential for clinical application.

摘要

有限的膜通透性和细菌耐药性给细胞内耐药细菌感染的治疗带来了重大挑战。为克服这一问题,我们开发了一种基于季铵化壳聚糖修饰的介孔二氧化硅纳米颗粒(MSN-NH-CFP@HACC)的细菌靶向给药系统,用于治疗细胞内耐甲氧西林金黄色葡萄球菌(MRSA)感染。该系统利用氨基功能化的介孔二氧化硅纳米颗粒高效负载头孢哌酮(CFP),并在纳米颗粒表面包覆2-羟丙基三甲基氯化铵壳聚糖(HACC)以靶向细菌并增强巨噬细胞摄取。研究结果表明,MSN-NH-CFP@HACC纳米颗粒能被巨噬细胞有效内化,在酸性环境中药物释放加速,且抗菌性能增强,可有效抑制MRSA的增殖和细胞内逃逸。此外,HACC增强了纳米颗粒对细菌的捕获能力,并通过破坏细菌膜结构和抑制细菌β-内酰胺酶活性降低耐药性。在MRSA菌血症小鼠模型中,MSN-NH-CFP@HACC表现出显著的抗菌效果,并显著减轻了严重的炎症反应。总之,MSN-NH-CFP@HACC是一种有前景的抗生素递送系统,具有卓越的抗菌效果和良好的生物相容性,从而为解决细胞内耐药细菌感染提供了一种新策略,并显示出巨大的临床应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验