Fiagbenu M M A, Yao S, Du X, Musavigharavi P, Deng Y, Leathersich J, Moe C, Kochhar A, Stach E A, Vetury R, Olsson R H
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, 32816, USA.
Microsyst Nanoeng. 2025 Jan 22;11(1):19. doi: 10.1038/s41378-024-00857-4.
Bulk Acoustic Wave (BAW) filters find applications in radio frequency (RF) communication systems for Wi-Fi, 3G, 4G, and 5G networks. In the beyond-5G (potential 6G) era, high-frequency bands (>8 GHz) are expected to require resonators with high-quality factor (Q) and electromechanical coupling ( ) to form filters with low insertion loss and high selectivity. However, both the Q and of resonator devices formed in traditional uniform polarization piezoelectric films of aluminum nitride (AlN) and aluminum scandium nitride (AlScN) decrease when scaled beyond 8 GHz. In this work, we utilized 4-layer AlScN periodically poled piezoelectric films (P3F) to construct high-frequency (~17-18 GHz) resonators and filters. The resonator performance is studied over a range of device geometries, with the best resonator achieving a of 11.8% and a of 236.6 at the parallel resonance frequency ( ) of 17.9 GHz. These resulting figures-of-merit are ( and ) 27.9 and 500, respectively. These and the are significantly higher than previously reported AlN/AlScN-based resonators operating at similar frequencies. Fabricated 3-element and 6-element filters formed from these resonators demonstrated low insertion losses (IL) of 1.86 and 3.25 dB, and -3 dB bandwidths (BW) of 680 MHz (fractional BW of 3.9%) and 590 MHz (fractional BW of 3.3%) at a ~17.4 GHz center frequency. The 3-element and 6-element filters achieved excellent linearity with in-band input third-order intercept point (IIP3) values of +36 and +40 dBm, respectively, which are significantly higher than previously reported acoustic filters operating at similar frequencies.
体声波(BAW)滤波器在用于Wi-Fi、3G、4G和5G网络的射频(RF)通信系统中有着广泛应用。在5G之后(潜在的6G)时代,预计高频频段(>8 GHz)将需要具有高品质因数(Q)和机电耦合( )的谐振器,以形成具有低插入损耗和高选择性的滤波器。然而,由传统均匀极化的氮化铝(AlN)和氮化钪铝(AlScN)压电薄膜制成的谐振器器件,当尺寸缩小到超过8 GHz时,其Q值和 都会下降。在这项工作中,我们利用4层AlScN周期性极化压电薄膜(P3F)来构建高频(17 - 18 GHz)谐振器和滤波器。我们研究了一系列器件几何结构下的谐振器性能,最佳谐振器在17.9 GHz的并联谐振频率( )下实现了11.8%的 和236.6的 。这些得到的品质因数( 和 )分别为( 和 )27.9和500。这些以及 显著高于先前报道的在类似频率下工作的基于AlN/AlScN的谐振器。由这些谐振器制成的3元件和6元件滤波器在17.4 GHz中心频率下,展示出了1.86和3.25 dB的低插入损耗(IL),以及680 MHz(分数带宽为3.9%)和590 MHz(分数带宽为3.3%)的 -3 dB带宽(BW)。3元件和6元件滤波器实现了出色的线性度,带内输入三阶截点(IIP3)值分别为 +36和 +40 dBm,这显著高于先前报道的在类似频率下工作的声学滤波器。