Wang Binnan, Kong Yibo, Ye Xiu-Kun, Ye Shounuan, Chen Tianyi, Wang Shanlu, Li Shuixing, Shi Minmin, Xu Jun-Ting, Chen Hongzheng
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China.
ACS Appl Mater Interfaces. 2025 Feb 5;17(5):7707-7715. doi: 10.1021/acsami.4c18536. Epub 2025 Jan 22.
Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F. Suitable temperature-dependent aggregation for reasonable phase separation and compact molecular packing for improved charge transport were achieved in the PTETz-80F-based system, resulting in higher exciton dissociation probability and charge collection probability. Thereby, devices based on PTETz-80F:L8-BO exhibited the best photovoltaic performance with a PCE of 12.69%. In addition, the synthetic complexity of PTETz-XF polymers is 46.05%, which is significantly lower than those of other representative high-performance polymer donors. This work demonstrates the feasibility of designing PTs with an E-Tz unit and the effectiveness of the copolymerization strategy on material property and device performance optimization.