Suppr超能文献

用于两终端非易失性存储器件和神经形态计算的ITO电极上Ru(II)-聚吡啶低聚物薄膜的电合成

Electrosynthesis of Ru (II)-Polypyridyl Oligomeric Films on ITO Electrode for Two Terminal Non-Volatile Memory Devices and Neuromorphic Computing.

作者信息

Sachan Pradeep, Sharma Pritish, Kaur Rajwinder, Manna Debashree, Sahay Shubham, Mondal Prakash Chandra

机构信息

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.

Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.

出版信息

Small Methods. 2025 Jan 23:e2401911. doi: 10.1002/smtd.202401911.

Abstract

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.7 cm) two terminal molecular junctions. The molecular junctions exhibit non-volatile resistive switching at a relatively lower operational voltage, ±1 V, high ON/OFF electrical current ratio (≈10), low-energy consumption (SET/RESET = 27.94/14400 nJ), good cyclic stability (>300 cycles), and switching speed (SET/RESET = 25 ms/20 ms). A computational study suggests that accessible frontier molecular orbitals of metal-complex to the Fermi level of ITO electrodes facilitate charge transport at a relatively lower bias followed by a filamentformation. An extensive analysis is performed of the performance of binary neural networks exploiting the current-voltage features of the devices as binary synaptic weights and exploring their potential for neuromorphic logic-in-memory implementation of IMPLICATION (IMPLY) operation which can realize universal gates. The comprehensive analysis indicates that the proposed redox-active complex-based memory device may be a promising candidate for high-density data storage, energy-efficient implementation of neuromorphic networks with software-level accuracy, and logic-in-memory implementations.

摘要

具有电阻开关记忆特性的分子电子学对下一代数字技术具有巨大的潜力。在这项工作中,在氧化铟锡(ITO)电极上展示了钌多吡啶纳米级低聚物薄膜的电合成,随后进行ITO顶部接触沉积,得到大规模(结面积 = 0.7×0.7 cm)的两终端分子结。这些分子结在相对较低的工作电压±1 V下表现出非易失性电阻开关,具有高的开/关电流比(≈10)、低能耗(SET/RESET = 27.94/14400 nJ)、良好的循环稳定性(>300次循环)和开关速度(SET/RESET = 25 ms/20 ms)。一项计算研究表明,金属配合物可及的前沿分子轨道与ITO电极的费米能级有助于在相对较低的偏压下进行电荷传输,随后形成细丝。利用器件的电流 - 电压特性作为二元突触权重,对二元神经网络的性能进行了广泛分析,并探索了它们在实现通用门的蕴含(IMPLY)操作的神经形态逻辑 - 内存实现中的潜力。综合分析表明,所提出的基于氧化还原活性配合物的存储器件可能是用于高密度数据存储、具有软件级精度的神经形态网络的节能实现以及逻辑 - 内存实现的有前途的候选者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验