Li Rui, Sun Qiming, Zhang Xing, Chan Garnet Kin-Lic
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Quantum Engine LLC, Lacey, Washington 98516, United States.
J Phys Chem A. 2025 Feb 6;129(5):1459-1468. doi: 10.1021/acs.jpca.4c05876. Epub 2025 Jan 23.
We introduce the first version of GPU4PySCF, a module that provides GPU acceleration of methods in PySCF. As a core functionality, this provides a GPU implementation of two-electron repulsion integrals (ERIs) for contracted basis sets comprising up to functions using the Rys quadrature. As an illustration of how this can accelerate a quantum chemistry workflow, we describe how to use the ERIs efficiently in the integral-direct Hartree-Fock build and nuclear gradient construction. Benchmark calculations show a significant speedup of 2 orders of magnitude with respect to the multithreaded CPU Hartree-Fock code of PySCF and the performance comparable to other open-source GPU-accelerated quantum chemical packages, including GAMESS and QUICK, on a single NVIDIA A100 GPU.
我们介绍了GPU4PySCF的首个版本,这是一个为PySCF中的方法提供GPU加速的模块。作为核心功能,它为包含多达 个函数的收缩基集提供了使用Rys求积法的两电子排斥积分(ERI)的GPU实现。作为这种加速如何应用于量子化学工作流程的示例,我们描述了如何在积分直接Hartree-Fock构建和核梯度构建中高效使用ERI。基准计算表明,相对于PySCF的多线程CPU Hartree-Fock代码,速度显著加快了2个数量级,并且在单个NVIDIA A100 GPU上的性能与其他开源GPU加速量子化学软件包(包括GAMESS和QUICK)相当。