Suppr超能文献

用于广泛化学空间覆盖的分子力学力场的数据驱动参数化。

Data-driven parametrization of molecular mechanics force fields for expansive chemical space coverage.

作者信息

Zheng Tianze, Wang Ailun, Han Xu, Xia Yu, Xu Xingyuan, Zhan Jiawei, Liu Yu, Chen Yang, Wang Zhi, Wu Xiaojie, Gong Sheng, Yan Wen

机构信息

ByteDance Research, Beijing Beijing 100098 China

ByteDance Research Bellevue Washington 98004 USA

出版信息

Chem Sci. 2024 Dec 31;16(6):2730-2740. doi: 10.1039/d4sc06640e. eCollection 2025 Feb 5.

Abstract

A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges. In this study, we address this issue using a modern data-driven approach, developing ByteFF, an Amber-compatible force field for drug-like molecules. To create ByteFF, we generated an expansive and highly diverse molecular dataset at the B3LYP-D3(BJ)/DZVP level of theory. This dataset includes 2.4 million optimized molecular fragment geometries with analytical Hessian matrices, along with 3.2 million torsion profiles. We then trained an edge-augmented, symmetry-preserving molecular graph neural network (GNN) on this dataset, employing a carefully optimized training strategy. Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space. ByteFF demonstrates state-of-the-art performance on various benchmark datasets, excelling in predicting relaxed geometries, torsional energy profiles, and conformational energies and forces. Its exceptional accuracy and expansive chemical space coverage make ByteFF a valuable tool for multiple stages of computational drug discovery.

摘要

力场是计算药物发现分子动力学模拟中的关键组成部分。在分子力学(MM)有限的函数形式的约束下,它必须实现高精度,而分子力学具有很高的计算效率。随着合成可及化学空间的迅速扩展,传统的查找表方法面临重大挑战。在本研究中,我们使用现代数据驱动方法解决此问题,开发了ByteFF,这是一种与Amber兼容的用于类药物分子的力场。为了创建ByteFF,我们在B3LYP-D3(BJ)/DZVP理论水平上生成了一个庞大且高度多样的分子数据集。该数据集包括240万个带有解析海森矩阵的优化分子片段几何结构,以及320万个扭转轮廓。然后,我们在这个数据集上训练了一个边缘增强、保持对称性的分子图神经网络(GNN),采用了精心优化的训练策略。我们的模型可以在广泛的化学空间中同时预测类药物分子的所有键合和非键合MM力场参数。ByteFF在各种基准数据集上展示了最先进的性能,在预测松弛几何结构、扭转能量轮廓以及构象能量和力方面表现出色。其卓越的准确性和广泛的化学空间覆盖范围使ByteFF成为计算药物发现多个阶段的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddc3/11795876/4157e0c104e1/d4sc06640e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验