Welmillage Shashini U, James Euan K, Tak Nisha, Shedge Sonali, Huang Lei, Muszyński Artur, Azadi Parastoo, Gyaneshwar Prasad
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
The James Hutton Institute, Dundee, Scotland, United Kingdom.
J Bacteriol. 2025 Feb 20;207(2):e0042224. doi: 10.1128/jb.00422-24. Epub 2025 Jan 23.
a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus as well as with common bean ( L.). are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes. However, the detailed mechanisms important for β-rhizobia-legume symbiosis have not yet been determined. In this manuscript, we have sequenced the genome of MP20, a strain isolated from nodules, and utilized transposon mutagenesis to identify a mutant that showed delayed and ineffective nodulation of . Further analysis revealed that the mutant strain produced an altered lipopolysaccharide lacking rhamnose containing O-antigen. Complementation with the wild-type gene restored the symbiosis. Microscopic analysis of the ineffective nodules showed that the mutant strain did not infect the cortical cells but was restricted to the endodermis. The results suggest that the O-antigen of is important for the bacterial infection of cortical cells and for nodule maturation. Further research will unveil the specific involvement of the glycosyltransferase gene in LPS biosynthesis and its impact on successful nodule formation by .IMPORTANCEThe nitrogen-fixing symbiosis between legumes and rhizobia is important for agricultural and environmental sustainability. The mechanisms of the symbiotic interactions are extensively studied using α-rhizobia. In contrast, mechanisms of symbiotic interactions important for β-rhizobia and their Caesalpinioid (mimosoid) legume hosts are not well known. Here, we describe the genome sequence of MP20 a β-rhizobia isolated from the nodules of and isolation and characterization of a transposon mutant defective in symbiosis. We demonstrate that the O-antigen of the LPS is required for nodulation and symbiotic nitrogen fixation. This study broadens our knowledge of symbiotic interactions in β-rhizobia and will lead to a better understanding of the wider rhizobial-legume symbiosis apart from the α-rhizobia.
一种β-变形菌,与大型豆科植物属的许多物种以及菜豆(Phaseolus vulgaris L.)形成固氮共生关系。人们认为它们与经过充分研究的豆科植物α-变形菌共生体独立进化出了根瘤形成能力。然而,对于β-根瘤菌与豆科植物共生关系重要的详细机制尚未确定。在本论文中,我们对从Phaseolus vulgaris根瘤中分离出的菌株MP20的基因组进行了测序,并利用转座子诱变来鉴定一株在Phaseolus vulgaris上表现出根瘤形成延迟且无效的突变体。进一步分析表明,该突变菌株产生了一种改变的脂多糖,缺乏含有鼠李糖的O抗原。用野生型基因进行互补恢复了共生关系。对无效根瘤的显微镜分析表明,突变菌株没有感染皮层细胞,而是局限在内皮层。结果表明,Phaseolus vulgaris的O抗原对于细菌感染皮层细胞和根瘤成熟很重要。进一步的研究将揭示糖基转移酶基因在脂多糖生物合成中的具体作用及其对Phaseolus vulgaris成功形成根瘤的影响。
豆科植物与根瘤菌之间的固氮共生关系对农业和环境可持续性很重要。利用α-根瘤菌对共生相互作用的机制进行了广泛研究。相比之下,对于β-根瘤菌及其苏木科(含羞草科)豆科植物宿主重要的共生相互作用机制尚不清楚。在这里,我们描述了从Phaseolus vulgaris根瘤中分离出的β-根瘤菌MP20的基因组序列,以及一个共生缺陷的转座子突变体的分离和表征。我们证明脂多糖的O抗原是根瘤形成和共生固氮所必需的。这项研究拓宽了我们对β-根瘤菌共生相互作用的认识,并将有助于更好地理解除α-根瘤菌之外更广泛的根瘤菌-豆科植物共生关系。