Duan Yaning, Xu Zhenmei, Hao Boyu, Zhang Anqi, Guo Changyou, He Yuanzheng
Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150001, China.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2415426122. doi: 10.1073/pnas.2415426122. Epub 2025 Jan 23.
Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein. These structures reveal a distinct ligand binding and recognition mode that differs significantly from that of LPAR1. Specifically, LPA uses its charged head to form an extensive polar interaction network with key polar residues on the extracellular side of transmembrane helix 5-6 and the extracellular loop 2. Structural comparisons and homology analysis suggest that the EDG and non-EDG families use two distinct modes for LPA binding. The structural observations are validated through functional mutagenesis studies. We further uncover the mechanisms of LPAR6 activation and principles of G-protein coupling. The structural information revealed by our study lays the groundwork for understanding LPAR6 signaling and provides a rational basis for designing compounds targeting LPAR6.
溶血磷脂酸(LPA)通过内皮分化基因(EDG)家族的LPA受体(LPAR1 - 3)或非EDG家族的LPA受体(LPAR4 - 6)发挥其生理作用。LPAR6在脱发和癌症进展中起关键作用,但其结构信息非常有限。在此,我们报道了与小型G蛋白或G蛋白复合物结合的LPA结合型人LPAR6的冷冻电子显微镜结构。这些结构揭示了一种独特的配体结合和识别模式,与LPAR1的模式有显著差异。具体而言,LPA利用其带电荷的头部与跨膜螺旋5 - 6细胞外侧和细胞外环2上的关键极性残基形成广泛的极性相互作用网络。结构比较和同源性分析表明,EDG家族和非EDG家族对LPA结合使用两种不同的模式。通过功能诱变研究验证了结构观察结果。我们进一步揭示了LPAR6激活的机制和G蛋白偶联的原理。我们的研究揭示的结构信息为理解LPAR6信号传导奠定了基础,并为设计靶向LPAR6的化合物提供了合理依据。