Suppr超能文献

可见近红外光谱技术作为牛胴体分类的辅助工具。

Vis-NIRS as an auxiliary tool in the classification of bovine carcasses.

作者信息

Pereira Gabriela Zardo, Pereira Gabriel de Morais, Gomes Rodrigo da Costa, Feijó Gelson Luís Dias, Surita Lucy Mery Antonia, Pereira Marília Williani Filgueira, Menezes Gilberto Romeiro de Oliveira, Cara Jaqueline Rodrigues Ferreira, Ítavo Luis Carlos Vinhas, Silva Saulo da Luz E, Amin Melissa, Gomes Marina de Nadai Bonin

机构信息

College of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.

Embrapa Beef Cattle, Brazilian Agricultural Research Company, Campo Grande, Mato Grosso do Sul, Brazil.

出版信息

PLoS One. 2025 Jan 23;20(1):e0317434. doi: 10.1371/journal.pone.0317434. eCollection 2025.

Abstract

This work aimed to evaluate the use of Visible and Near-infrared Spectroscopy (Vis-NIRS) as a tool in the classification of bovine carcasses. A total of 133 animals (77 females, 29 males surgically castrated and 27 males immunologically castrated) were used. Vis-NIRS spectra were collected in a chilling room 24 h postmortem directly on the hanging carcasses over the longissimus thoracis between the surface of the 5th and 6th ribs. The data were evaluated by principal component analysis (PCA) and the partial least squares regression (PLSR) method. For the prediction of sex, the best model was the Standard Normal Variate (SNV) because it presented a relatively high coefficient of determination for prediction, presenting a percentage of correctness of 75.51% and an error of 24.49%. Regarding age, none of the models were able to differentiate the samples through Vis-NIRS. The findings confirm that Vis-NIRS prediction models are a valuable tool for differentiating carcasses based on sex. To further enhance the precision of these predictions, we recommend using Vis-NIRS equipment with the full infrared wavelength range to collect and predict sex and age in intact beef samples.

摘要

这项工作旨在评估可见近红外光谱技术(Vis-NIRS)作为一种用于牛胴体分类工具的应用。共使用了133头动物(77头雌性、29头手术去势雄性和27头免疫去势雄性)。在宰后24小时的冷却室中,直接在悬挂的胴体上,于第5和第6肋骨表面之间的胸最长肌处采集Vis-NIRS光谱。通过主成分分析(PCA)和偏最小二乘回归(PLSR)方法对数据进行评估。对于性别的预测,最佳模型是标准正态变量变换(SNV),因为它在预测方面具有相对较高的决定系数,预测正确率为75.51%,误差为24.49%。关于年龄,没有一个模型能够通过Vis-NIRS区分样本。研究结果证实,Vis-NIRS预测模型是基于性别区分胴体的一种有价值的工具。为了进一步提高这些预测的精度,我们建议使用具有全红外波长范围的Vis-NIRS设备来采集和预测完整牛肉样本的性别和年龄。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b13b/11756776/8f136e9e3f2a/pone.0317434.g001.jpg

相似文献

1
Vis-NIRS as an auxiliary tool in the classification of bovine carcasses.
PLoS One. 2025 Jan 23;20(1):e0317434. doi: 10.1371/journal.pone.0317434. eCollection 2025.
2
Using portable visible and near-infrared spectroscopy to authenticate beef from grass, barley, and corn-fed cattle.
Food Res Int. 2024 Dec;198:115327. doi: 10.1016/j.foodres.2024.115327. Epub 2024 Nov 13.
4
Rapid discrimination of enhanced quality pork by visible and near infrared spectroscopy.
Meat Sci. 2015 Dec;110:76-84. doi: 10.1016/j.meatsci.2015.07.006. Epub 2015 Jul 12.
6
Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy.
Meat Sci. 2020 May;163:108077. doi: 10.1016/j.meatsci.2020.108077. Epub 2020 Feb 1.
7
Extensive evaluation of prediction performance for 15 pork quality traits using large scale VIS/NIRS data.
Meat Sci. 2022 Oct;192:108902. doi: 10.1016/j.meatsci.2022.108902. Epub 2022 Jul 5.
8
Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers.
Meat Sci. 2020 Mar;161:108017. doi: 10.1016/j.meatsci.2019.108017. Epub 2019 Nov 21.
10
Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Apr 5;230:118005. doi: 10.1016/j.saa.2019.118005. Epub 2020 Jan 14.

本文引用的文献

1
Rapid Non-Destructive Detection Technology in the Field of Meat Tenderness: A Review.
Foods. 2024 May 13;13(10):1512. doi: 10.3390/foods13101512.
2
Optical sensing as analytical tools for meat tenderness measurements - A review.
Meat Sci. 2023 Jan;195:109007. doi: 10.1016/j.meatsci.2022.109007. Epub 2022 Oct 17.
3
Non-invasive spectroscopic and imaging systems for prediction of beef quality in a meat processing pilot plant.
Meat Sci. 2021 Nov;181:108410. doi: 10.1016/j.meatsci.2020.108410. Epub 2020 Dec 14.
5
Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy.
Meat Sci. 2020 May;163:108077. doi: 10.1016/j.meatsci.2020.108077. Epub 2020 Feb 1.
6
Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review.
Asian-Australas J Anim Sci. 2018 Jul;31(7):1043-1061. doi: 10.5713/ajas.18.0310. Epub 2018 May 31.
7
Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin.
Asian-Australas J Anim Sci. 2018 Jun;31(6):914-918. doi: 10.5713/ajas.17.0640. Epub 2017 Dec 19.
8
A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products.
Appl Spectrosc. 2017 Jul;71(7):1403-1426. doi: 10.1177/0003702817709299. Epub 2017 May 23.
9
Predicting pork quality using Vis/NIR spectroscopy.
Meat Sci. 2015 Oct;108:37-43. doi: 10.1016/j.meatsci.2015.04.018. Epub 2015 May 9.
10
Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments.
Anim Sci J. 2015 Jan;86(1):1-16. doi: 10.1111/asj.12266. Epub 2014 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验