Das Samhita, Unhale Tanaya, Marinach Carine, Valeriano Alegria Belsy Del Carmen, Roux Camille, Madry Hélène, Mohand Oumoussa Badreddine, Amino Rogerio, Iwanaga Shiroh, Briquet Sylvie, Silvie Olivier
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Institut Pasteur, Laboratory of Ecology and Emergence of Arthropod-borne Pathogens, Paris, France.
Sci Rep. 2025 Jan 23;15(1):2949. doi: 10.1038/s41598-025-87114-4.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes. Conventional reverse genetic tools cannot be used to study essential genes of the asexual blood stages, thereby necessitating the development of conditional strategies. Among various such strategies, the rapamycin-inducible dimerisable Cre (DiCre) recombinase system emerged as a powerful approach for conditional editing of essential genes in human-infecting P. falciparum and in the rodent malaria model parasite P. berghei. We previously generated a DiCre-expressing P. berghei line and validated it by conditionally deleting several essential asexual stage genes, revealing their important role also in sporozoites. Another potent tool is the CRISPR/Cas9 technology, which has enabled targeted genome editing with higher accuracy and specificity and greatly advanced genome engineering in Plasmodium spp. Here, we developed new P. berghei parasite lines by integrating the DiCre cassette and a fluorescent marker in parasites constitutively expressing Cas9. Owing to the dual integration of CRISPR/Cas9 and DiCre, these new lines allow unparalleled levels of gene modification and conditional regulation simultaneously. To illustrate the versatility of this new tool, we conditionally knocked out the essential gene encoding the claudin-like apicomplexan micronemal protein (CLAMP) in P. berghei and confirmed the role of CLAMP during invasion of erythrocytes.
疟疾由疟原虫属的原生动物寄生虫引起,仍然是全球关注的健康问题。该寄生虫具有高度适应性的生命周期,包括在脊椎动物宿主中连续进行无性繁殖以及在按蚊媒介中进行有性成熟。对该寄生虫的基因操作有助于解析疟原虫基因的功能。传统的反向遗传工具不能用于研究无性血液阶段的必需基因,因此需要开发条件性策略。在各种此类策略中,雷帕霉素诱导的二聚化Cre(DiCre)重组酶系统成为在感染人类的恶性疟原虫和啮齿动物疟疾模型寄生虫伯氏疟原虫中对必需基因进行条件性编辑的有力方法。我们之前构建了一个表达DiCre的伯氏疟原虫品系,并通过条件性删除几个必需的无性阶段基因对其进行了验证,揭示了它们在子孢子中也具有重要作用。另一个强大的工具是CRISPR/Cas9技术,它能够实现更高准确性和特异性的靶向基因组编辑,并极大地推动了疟原虫属的基因组工程。在这里,我们通过将DiCre盒和荧光标记整合到组成型表达Cas9的寄生虫中,开发了新的伯氏疟原虫寄生虫品系。由于CRISPR/Cas9和DiCre的双重整合,这些新的品系能够同时实现无与伦比的基因修饰水平和条件性调控。为了说明这种新工具的多功能性,我们在伯氏疟原虫中条件性敲除了编码claudin样顶复门微线体蛋白(CLAMP)的必需基因,并证实了CLAMP在红细胞入侵过程中的作用。