Suppr超能文献

基于物联网的电子鼻系统实验室原型在呼吸传感应用中对挥发性有机化合物的分类与预测

Classification and Prediction of VOCs Using an IoT-Enabled Electronic Nose System-Based Lab Prototype for Breath Sensing Applications.

作者信息

Vadera Nikhil, Dhanekar Saakshi

机构信息

Interdisciplinary Research Division Smart HealthCare, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.

Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, India.

出版信息

ACS Sens. 2025 Jan 24;10(1):439-447. doi: 10.1021/acssensors.4c02731. Epub 2024 Dec 29.

Abstract

Electronic nose (e-nose) systems are well known in breath analysis because they combine breath printing with advanced and intelligent machine learning (ML) algorithms. This work demonstrates development of an e-nose system comprising gas sensors exposed to six different volatile organic compounds (VOCs). The change in the voltage of the sensors was recorded and analyzed through ML algorithms to achieve selectivity and predict the VOCs. In this work, a novel approach to automatic learning technology that systematically categorizes and implements standard algorithms for use on gas sensors' data set is presented. Different algorithms were compared based on F1 score, accuracy, and testing time. Performance testing of these methods is also conducted on both a Google Colab and a single-board computer, simulating their application in portable Internet of Things (IoT) sensor systems. Post validation, a simple IoT-enabled prototype was prepared that was tested in the presence of normal breath, alcohol (simulated breath), mint, mouthwash, and cardamom. The model system could classify a simulated breath alcohol sample and other breath samples with an accuracy of 0.96 obtained from the Extra Trees model. This work can be scaled up to a system wherein further breath print analysis can be used for breath diagnostic applications to detect diseases or a person's physiological condition.

摘要

电子鼻(e-nose)系统在呼吸分析领域广为人知,因为它们将呼吸指纹识别与先进的智能机器学习(ML)算法相结合。这项工作展示了一种电子鼻系统的开发,该系统包括暴露于六种不同挥发性有机化合物(VOCs)的气体传感器。记录传感器的电压变化,并通过ML算法进行分析,以实现选择性并预测VOCs。在这项工作中,提出了一种自动学习技术的新方法,该方法系统地对用于气体传感器数据集的标准算法进行分类和实施。基于F1分数、准确率和测试时间对不同算法进行了比较。这些方法还在谷歌Colab和单板计算机上进行了性能测试,模拟它们在便携式物联网(IoT)传感器系统中的应用。经过验证后,制备了一个简单的物联网原型,并在正常呼吸、酒精(模拟呼吸)、薄荷、漱口水和小豆蔻存在的情况下进行了测试。该模型系统能够以从Extra Trees模型获得的0.96的准确率对模拟呼吸酒精样本和其他呼吸样本进行分类。这项工作可以扩展到一个系统,其中进一步的呼吸指纹分析可用于呼吸诊断应用,以检测疾病或一个人的生理状况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验