Electronics Department, Tecnológico Nacional de México/Instituto Tecnológico de Ciudad Guzmán, Ciudad Guzmán 49100, Mexico.
Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico.
Sensors (Basel). 2024 Feb 17;24(4):1294. doi: 10.3390/s24041294.
Volatile organic compounds (VOCs) in exhaled human breath serve as pivotal biomarkers for disease identification and medical diagnostics. In the context of diabetes mellitus, the noninvasive detection of acetone, a primary biomarker using electronic noses (e-noses), has gained significant attention. However, employing e-noses requires pre-trained algorithms for precise diabetes detection, often requiring a computer with a programming environment to classify newly acquired data. This study focuses on the development of an embedded system integrating Tiny Machine Learning (TinyML) and an e-nose equipped with Metal Oxide Semiconductor (MOS) sensors for real-time diabetes detection. The study encompassed 44 individuals, comprising 22 healthy individuals and 22 diagnosed with various types of diabetes mellitus. Test results highlight the XGBoost Machine Learning algorithm's achievement of 95% detection accuracy. Additionally, the integration of deep learning algorithms, particularly deep neural networks (DNNs) and one-dimensional convolutional neural network (1D-CNN), yielded a detection efficacy of 94.44%. These outcomes underscore the potency of combining e-noses with TinyML in embedded systems, offering a noninvasive approach for diabetes mellitus detection.
呼气中的挥发性有机化合物(VOCs)可作为疾病识别和医学诊断的关键生物标志物。在糖尿病领域,使用电子鼻(e-nose)对丙酮等主要生物标志物进行非侵入性检测已引起广泛关注。然而,使用电子鼻进行检测需要经过预训练的算法来实现精确的糖尿病检测,这通常需要一台配备编程环境的计算机来对新获取的数据进行分类。本研究专注于开发一种集成 Tiny Machine Learning(TinyML)和配备金属氧化物半导体(MOS)传感器的电子鼻的嵌入式系统,以实现实时糖尿病检测。该研究纳入了 44 名个体,其中包括 22 名健康个体和 22 名被诊断患有各种类型糖尿病的个体。测试结果突出显示,XGBoost 机器学习算法的检测准确率达到了 95%。此外,深度学习算法的整合,特别是深度神经网络(DNN)和一维卷积神经网络(1D-CNN),实现了 94.44%的检测效果。这些结果强调了将电子鼻与 TinyML 结合到嵌入式系统中的潜力,为糖尿病的非侵入性检测提供了一种新方法。