Suppr超能文献

在骨科诊断中评估ChatGPT、Gemini和其他大语言模型:一项前瞻性临床研究。

Evaluating ChatGPT, Gemini and other Large Language Models (LLMs) in orthopaedic diagnostics: A prospective clinical study.

作者信息

Pagano Stefano, Strumolo Luigi, Michalk Katrin, Schiegl Julia, Pulido Loreto C, Reinhard Jan, Maderbacher Guenther, Renkawitz Tobias, Schuster Marie

机构信息

Department of Orthopaedic Surgery, University of Regensburg, Asklepios Klinikum, Bad Abbach, Germany.

Freelance health consultant & senior data analyst, Avellino, Italy.

出版信息

Comput Struct Biotechnol J. 2024 Dec 26;28:9-15. doi: 10.1016/j.csbj.2024.12.013. eCollection 2025.

Abstract

BACKGROUND

Large Language Models (LLMs) such as ChatGPT are gaining attention for their potential applications in healthcare. This study aimed to evaluate the diagnostic sensitivity of various LLMs in detecting hip or knee osteoarthritis (OA) using only patient-reported data collected via a structured questionnaire, without prior medical consultation.

METHODS

A prospective observational study was conducted at an orthopaedic outpatient clinic specialized in hip and knee OA treatment. A total of 115 patients completed a paper-based questionnaire covering symptoms, medical history, and demographic information. The diagnostic performance of five different LLMs-including four versions of ChatGPT, two of Gemini, Llama, Gemma 2, and Mistral-Nemo-was analysed. Model-generated diagnoses were compared against those provided by experienced orthopaedic clinicians, which served as the reference standard.

RESULTS

GPT-4o achieved the highest diagnostic sensitivity at 92.3 %, significantly outperforming other LLMs. The completeness of patient responses to symptom-related questions was the strongest predictor of accuracy for GPT-4o (p < 0.001). Inter-model agreement was moderate among GPT-4 versions, whereas models such as Llama-3.1 demonstrated notably lower accuracy and concordance.

CONCLUSIONS

GPT-4o demonstrated high accuracy and consistency in diagnosing OA based solely on patient-reported questionnaires, underscoring its potential as a supplementary diagnostic tool in clinical settings. Nevertheless, the reliance on patient-reported data without direct physician involvement highlights the critical need for medical oversight to ensure diagnostic accuracy. Further research is needed to refine LLM capabilities and expand their utility in broader diagnostic applications.

摘要

背景

诸如ChatGPT之类的大语言模型(LLMs)因其在医疗保健领域的潜在应用而受到关注。本研究旨在评估各种大语言模型在仅使用通过结构化问卷收集的患者报告数据、无需事先就医咨询的情况下检测髋部或膝部骨关节炎(OA)的诊断敏感性。

方法

在一家专门治疗髋部和膝部骨关节炎的骨科门诊进行了一项前瞻性观察研究。共有115名患者完成了一份纸质问卷,内容涵盖症状、病史和人口统计学信息。分析了五个不同大语言模型的诊断性能,包括四个版本的ChatGPT、两个版本的Gemini、Llama、Gemma 2和Mistral-Nemo。将模型生成的诊断结果与经验丰富的骨科临床医生提供的诊断结果进行比较,后者作为参考标准。

结果

GPT-4o的诊断敏感性最高,为92.3%,显著优于其他大语言模型。患者对症状相关问题回答的完整性是GPT-4o准确性的最强预测因素(p<0.001)。GPT-4各版本之间的模型间一致性中等,而Llama-3.1等模型的准确性和一致性则明显较低。

结论

GPT-4o仅基于患者报告的问卷在诊断OA方面表现出高准确性和一致性,突出了其作为临床环境中辅助诊断工具的潜力。然而,在没有医生直接参与的情况下依赖患者报告的数据凸显了医疗监督以确保诊断准确性的迫切需求。需要进一步研究来完善大语言模型的能力并扩大其在更广泛诊断应用中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e55/11754967/edf05bc5aa3d/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验