Liu Chun, Zhang Jianyu, Xu Ranran, Lv Jinhui, Qiao Zhu, Bai Mingzhou, Zhao Shancen, Luo Lijuan, Liu Guodao, Liu Pandao
School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giae118.
Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.
We present a chromosome-scale reference genome of S. angustifolia, which provides insights into its genome evolution and drought tolerance mechanisms. The assembled genome is 645.88 Mb in size, containing 319.98 Mb of repetitive sequences and 36,857 protein-coding genes. The high quality of this genome assembly is demonstrated by the presence of 99.26% BUSCO and a 19.49 long terminal repeat assembly index. Evolutionary analyses revealed that S. angustifolia shares a whole-genome duplication (WGD) event with other legumes but lacks recent WGD. Additionally, S. angustifolia has undergone gene expansion through tandem duplication approximately 12.31 million years ago. Through integrative multiomics analyses, we identified 4 gene families-namely, xanthoxin dehydrogenase, 2-hydroxyisoflavanone dehydratase, patatin-related phospholipase A, and stachyose synthetase-that underwent tandem duplication and were significantly upregulated under drought stress. These gene families contribute to the biosynthesis of abscisic acid, genistein, daidzein, jasmonic acid, and stachyose, thereby enhancing drought tolerance.
The genome assembly of S. angustifolia represents a significant advancement in understanding the genetic mechanisms underlying drought tolerance in this pioneer plant species. This genomic resource provides critical insights into the evolution of drought resistance and offers valuable genetic information for breeding programs aimed at improving drought resistance in crops.
干旱是植物生存和作物生产力的主要限制因素。先锋植物狭叶链荚豆表现出显著的耐旱性,但其抗旱的分子机制在很大程度上仍未得到探索。
我们展示了狭叶链荚豆的染色体水平参考基因组,这为其基因组进化和耐旱机制提供了见解。组装的基因组大小为645.88 Mb,包含319.98 Mb的重复序列和36,857个蛋白质编码基因。99.26%的BUSCO存在和19.49的长末端重复序列组装指数证明了该基因组组装的高质量。进化分析表明,狭叶链荚豆与其他豆科植物共享一次全基因组复制(WGD)事件,但缺乏近期的WGD。此外,狭叶链荚豆大约在1231万年前通过串联重复经历了基因扩增。通过综合多组学分析,我们鉴定出4个基因家族,即黄嘌呤脱氢酶、2-羟基异黄酮脱水酶、类Patatin磷脂酶A和水苏糖合成酶,它们经历了串联重复并在干旱胁迫下显著上调。这些基因家族有助于脱落酸、染料木黄酮、大豆苷元、茉莉酸和水苏糖的生物合成,从而增强耐旱性。
狭叶链荚豆的基因组组装代表了在理解这种先锋植物物种耐旱遗传机制方面的重大进展。这种基因组资源为抗旱进化提供了关键见解,并为旨在提高作物抗旱性的育种计划提供了有价值的遗传信息。