Suppr超能文献

用于急性胰腺炎严重程度分类的多视图深度学习模型构建

Construction of a Multi-View Deep Learning Model for the Severity Classification of Acute Pancreatitis.

作者信息

Xiang Kailai, Shang Dong

机构信息

Department of General Surgery, First Affiliated Hospital of Dalian Medical University, 116011 Dalian, Liaoning, China.

Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, 116011 Dalian, Liaoning, China.

出版信息

Discov Med. 2025 Jan;37(192):73-92. doi: 10.24976/Discov.Med.202537192.7.

Abstract

BACKGROUND

Acute pancreatitis (AP) is a prevalent pathological condition of abdomen characterized by sudden onset, high incidence and complex progression. Timely assessment of AP severity is crucial for informing intervention decisions so as to delay deterioration and reduce mortality rates. Existing AP-related scoring systems can only assess current condition of patients and utilize only a single type of clinical data, which is of great limitation. Therefore, it is imperative to establish more accurate and data-compatible methods for predicting the severity of AP. The artificial intelligence (AI) algorithm based on artificial neural network (ANN) allow for the adaptive feature extraction for objective task through its internal complex network, instead of the hand-crafted methods commonly used in traditional machine learning (ML) algorithms. In this study, we delve into the final severity classification prediction of newly admitted AP patients, using deep learning (DL) algorithm to develop multi-view models, incorporated with patients' demographic information, vital signs, AP-related laboratory indexes and admission computed tomography (CT) images.

METHODS

The pancreatitis database in the platform of Clinical Data Research Center of Acute Abdominal Surgery at the First Affiliated Hospital of Dalian Medical University was used to gather AP cases. Deep neural network (DNN) and convolutional neural network (CNN) were utilized to construct models. The DNN prediction models with clinical data as input, the CNN prediction models with admission CT as input, and the multi-view models combining the two inputs were respectively established to predict the severity of AP.

RESULTS

DL models for AP severity classification based on clinical indexes, imaging data and merged data were constructed. The multi-view model based on merged data offered more accurate prediction of the final severity classification of AP, with an overall accuracy rate of 80.26% (95% confidence interval (CI): 79.58%-80.94%). The constituent accuracy rates for mild acute pancreatitis, moderately severe acute pancreatitis, and severe acute pancreatitis were 91.69% (95% CI: 87.80%-95.57%), 64.90% (95% CI: 58.85%-70.95%), and 75.56% (95% CI: 68.58%-82.53%), respectively.

CONCLUSION

The multi-view models using clinical indexes and imaging data as input outperform single-view models in AP severity prediction.

摘要

背景

急性胰腺炎(AP)是一种常见的腹部病理状况,其特点为起病急、发病率高且病情进展复杂。及时评估AP的严重程度对于指导干预决策至关重要,以便延缓病情恶化并降低死亡率。现有的与AP相关的评分系统只能评估患者的当前状况,且仅使用单一类型的临床数据,存在很大局限性。因此,迫切需要建立更准确且数据兼容的方法来预测AP的严重程度。基于人工神经网络(ANN)的人工智能(AI)算法通过其内部复杂网络能够针对客观任务进行自适应特征提取,而非传统机器学习(ML)算法中常用的手工制作方法。在本研究中,我们深入探讨新入院AP患者的最终严重程度分类预测,使用深度学习(DL)算法开发多视图模型,并纳入患者的人口统计学信息、生命体征、与AP相关的实验室指标以及入院时的计算机断层扫描(CT)图像。

方法

利用大连医科大学附属第一医院急腹症外科临床数据研究中心平台上的胰腺炎数据库收集AP病例。采用深度神经网络(DNN)和卷积神经网络(CNN)构建模型。分别建立以临床数据为输入的DNN预测模型、以入院CT为输入的CNN预测模型以及结合这两种输入的多视图模型,以预测AP的严重程度。

结果

构建了基于临床指标、影像数据和合并数据的AP严重程度分类DL模型。基于合并数据的多视图模型对AP最终严重程度分类的预测更为准确,总体准确率为80.26%(95%置信区间(CI):79.58% - 80.94%)。轻度急性胰腺炎、中度重症急性胰腺炎和重症急性胰腺炎的构成准确率分别为91.69%(95% CI:87.80% - 95.57%)、64.90%(95% CI:58.85% - 70.95%)和75.56%(95% CI:68.58% - 82.53%)。

结论

以临床指标和影像数据为输入的多视图模型在AP严重程度预测方面优于单视图模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验