Ritter Daniel, Raiss Patric, Denard Patrick J, Werner Brian C, Kistler Manuel, Lesnicar Celina, van der Merwe Micheal, Müller Peter E, Woiczinski Matthias, Wijdicks Coen A, Bachmaier Samuel
Department of Orthopedic Research, Arthrex, 81249 Munich, Germany.
Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80336 Munich, Germany.
Bioengineering (Basel). 2025 Jan 8;12(1):42. doi: 10.3390/bioengineering12010042.
This study evaluated the effects of bony increased offset (BIO) and metallic augments (MAs) on primary reverse shoulder arthroplasty (RSA) baseplate stability in cadaveric specimens with variable bone densities.
Thirty cadaveric specimens were analyzed in an imaging and biomechanical investigation. Computed tomography (CT) scans allowed for preoperative RSA planning and bone density analysis. Three correction methods of the glenoid were used: (1) corrective reaming with a standard baseplate, which served as the reference group ( = 10); (2) MA-RSA ( = 10); and (3) angled BIO-RSA ( = 10). Each augment group consisted of 10° ( = 5) and 20° ( = 5) corrections. Biomechanical testing included cyclic loading in an articulating setup, with optical pre- and post-cyclic micromotion measurements in a rocking horse setup.
There were no differences in bone density between groups based on CT scans ( > 0.126). The BIO-RSA group had higher variability in micromotion compared to the MA-RSA and reference groups ( = 0.013), and increased total micromotion compared to the reference group ( = 0.039). Both augmentations using 20° corrections had increased variance in rotational stability compared to the reference group ( = 0.043). Micromotion correlated with the subchondral bone density in the BIO-RSA group (r = -0.63, = 0.036), but not in the MA-RSA ( > 0.178) or reference ( > 0.117) groups.
Time-zero baseplate implant fixation is more variable with BIO-RSA and correlates with bone density. Corrections of 20° with either augmentation approach increase variability in rotational micromotion. The preoperative quantification of bone density may be useful before utilizing 20° of correction, especially when adding a bone graft in BIO-RSAs.
本研究评估了在具有不同骨密度的尸体标本中,骨增加偏移(BIO)和金属增强物(MAs)对初次反向全肩关节置换术(RSA)基板稳定性的影响。
在一项影像学和生物力学研究中分析了30个尸体标本。计算机断层扫描(CT)扫描用于术前RSA规划和骨密度分析。使用了三种肩胛盂矫正方法:(1)使用标准基板进行矫正扩孔,作为参考组(n = 10);(2)MA-RSA(n = 10);(3)成角度的BIO-RSA(n = 10)。每个增强物组包括10°(n = 5)和20°(n = 5)的矫正。生物力学测试包括在关节设置中的循环加载,以及在摇马设置中进行光学循环前和循环后微动测量。
基于CT扫描,各组之间的骨密度没有差异(p > 0.126)。与MA-RSA组和参考组相比,BIO-RSA组的微动变异性更高(p = 0.013),与参考组相比,总微动增加(p = 0.039)。与参考组相比,两种使用20°矫正的增强物在旋转稳定性方面的方差均增加(p = 0.043)。在BIO-RSA组中,微动与软骨下骨密度相关(r = -0.63,p = 0.036),但在MA-RSA组(p > 0.178)或参考组(p > 0.117)中不相关。
零时基板植入固定在BIO-RSA中更具变异性,且与骨密度相关。两种增强方法进行20°矫正均会增加旋转微动的变异性。在采用20°矫正之前,尤其是在BIO-RSA中添加骨移植时,术前骨密度定量可能会有所帮助。