文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Polymer Gels Based on PAMAM Dendrimers Functionalized with Caffeic Acid for Wound-Healing Applications.

作者信息

Castro Ricardo I, Donoso Wendy, Restovic Franko, Forero-Doria Oscar, Guzman Luis

机构信息

Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Carrera de Ingeniería en Construcción, Universidad Autónoma de Chile, Talca 3467987, Chile.

Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile.

出版信息

Gels. 2025 Jan 4;11(1):36. doi: 10.3390/gels11010036.


DOI:10.3390/gels11010036
PMID:39852007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11764813/
Abstract

The wound-healing process has usually been related to therapeutic agents with antioxidant properties. Among them, caffeic acid, a cinnamic acid derivative, stands out. However, the use of this natural product is affected by its bioavailability and half-life. Nowadays, different approaches are being taken to improve the above-mentioned characteristics, as many active surface groups are present in polyamidoamine (PAMAM) dendrimers; without the need for extra cross-linking agents, physical gels are created by interactions such as hydrogen bonds, van der Waals forces, or π-π interactions based on the modification of the surface. One of these is functionalization with dendrimers, such as the poly(amidoamine) (PAMAM) family. To evaluate the effectiveness of functionalizing caffeic acid with PAMAM dendrimers, the in vitro and in vivo wound-healing properties of gel-PAMAM G3 conjugated with caffeic acid (GPG3Ca) and its precursor, cinnamic acid (GPG3Cin), were studied. The results showed no cytotoxicity and wound-healing activity at a concentration of 20 μg/mL in HaCaT cells with the GPG3Ca. Additionally, the ability to activate molecular mediators of the healing process was evidenced. Furthermore, GPG3Ca potentiated the in vivo wound-healing process. The positive effects and lack of cytotoxicity at the used concentration of the synthesized GPG3Ca on the wound-healing process could position it as an effective agent for wound-healing treatment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/b2e2c2c7f1d6/gels-11-00036-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/eec9ba349d28/gels-11-00036-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/8aeb647ff4aa/gels-11-00036-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/64e6faf7368c/gels-11-00036-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/d6d70c248ced/gels-11-00036-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/d77fd5f2bee5/gels-11-00036-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/371c2b155f96/gels-11-00036-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/b958822b87a4/gels-11-00036-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/c16938076201/gels-11-00036-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/459f25826a51/gels-11-00036-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/195b00c9c0e4/gels-11-00036-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/5b01c79cfce8/gels-11-00036-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/b2e2c2c7f1d6/gels-11-00036-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/eec9ba349d28/gels-11-00036-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/8aeb647ff4aa/gels-11-00036-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/64e6faf7368c/gels-11-00036-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/d6d70c248ced/gels-11-00036-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/d77fd5f2bee5/gels-11-00036-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/371c2b155f96/gels-11-00036-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/b958822b87a4/gels-11-00036-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/c16938076201/gels-11-00036-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/459f25826a51/gels-11-00036-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/195b00c9c0e4/gels-11-00036-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/5b01c79cfce8/gels-11-00036-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7070/11764813/b2e2c2c7f1d6/gels-11-00036-g012.jpg

相似文献

[1]
Polymer Gels Based on PAMAM Dendrimers Functionalized with Caffeic Acid for Wound-Healing Applications.

Gels. 2025-1-4

[2]
Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding.

Biomater Sci. 2019-7-19

[3]
Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays.

Macromol Biosci. 2022-1

[4]
Encapsulation of Astragaloside with Matrix Metalloproteinase-2-Responsive Hyaluronic Acid End-Conjugated Polyamidoamine Dendrimers Improves Wound Healing in Diabetes.

J Biomed Nanotechnol. 2020-8-1

[5]
Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs.

Bioorg Med Chem. 2017-1-15

[6]
Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions.

J Mol Graph Model. 2017-9

[7]
gamma-Glutamyl PAMAM dendrimer as versatile precursor for dendrimer-based targeting devices.

Bioconjug Chem. 2010-1

[8]
evaluation of dendrimeric formulation of oxaliplatin.

Pharm Dev Technol. 2021-9

[9]
Association of nicotinic acid with a poly(amidoamine) dendrimer studied by molecular dynamics simulations.

J Mol Graph Model. 2012-11-19

[10]
In vitro dose-response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography-hybrid quadrupole/time-of-flight mass spectrometry based method.

Anal Bioanal Chem. 2012-8-9

引用本文的文献

[1]
The Production and Characterization of an Aminolyzed Polyhydroxyalkanoate Membrane and Its Cytocompatibility with Osteoblasts.

Molecules. 2025-2-18

本文引用的文献

[1]
Mass spectrometry of dendrimers.

Mass Spectrom Rev. 2025

[2]
Polyphenolic characterization and biological assessment of Acacia nilotica (L.) wild. Ex delilie: An In vitro and In vivo appraisal of wound healing potential.

J Ethnopharmacol. 2024-5-10

[3]
A critical overview of challenging roles of medicinal plants in improvement of wound healing technology.

Daru. 2024-6

[4]
Tea polyphenol/glycerol-treated double-network hydrogel with enhanced mechanical stability and anti-drying, antioxidant and antibacterial properties for accelerating wound healing.

Int J Biol Macromol. 2022-5-31

[5]
Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals.

Adv Colloid Interface Sci. 2020-2-19

[6]
Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding.

Biomater Sci. 2019-7-19

[7]
Rational Development of a Novel Hydrogel as a pH-Sensitive Controlled Release System for Nifedipine.

Polymers (Basel). 2018-7-23

[8]
extract improves impaired skin wound healing during hyperglycemia.

Integr Med Res. 2018-12

[9]
Perspectives of Dendrimer-based Nanoparticles in Cancer Therapy.

An Acad Bras Cienc. 2018-8

[10]
Cytotoxicity and in vivo plasma kinetic behavior of surface-functionalized PAMAM dendrimers.

Nanomedicine. 2018-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索