Rivera-Rivera Denise Margarita, Quintanilla-Villanueva Gabriela Elizabeth, Luna-Moreno Donato, Sánchez-Álvarez Araceli, Rodríguez-Delgado José Manuel, Cedillo-González Erika Iveth, Kaushik Garima, Villarreal-Chiu Juan Francisco, Rodríguez-Delgado Melissa Marlene
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico.
Biosensors (Basel). 2025 Jan 13;15(1):44. doi: 10.3390/bios15010044.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing.
塑料污染,尤其是微塑料(MPs)和纳米塑料(NPs)造成的污染,因其广泛分布、持久性和潜在毒性,已成为一个至关重要的环境与健康问题。微塑料和纳米塑料来源于主要源头,如化妆品微球或合成纤维,以及较大塑料通过环境降解产生的二次破碎。这些颗粒通常小于5毫米,在全球范围内都能找到,从深海床到人体组织,并且已知它们会吸附和释放有害污染物,加剧生态和健康风险。对微塑料和纳米塑料进行有效的检测和定量对于理解和减轻它们的影响至关重要。当前的分析方法包括物理和化学技术。物理方法,如光学和电子显微镜,能提供形态细节,但往往缺乏特异性且耗时。化学分析,如傅里叶变换红外(FTIR)和拉曼光谱,能提供分子特异性,但对于较小粒径和复杂基质面临挑战。热分析方法,包括热解气相色谱 - 质谱联用(Py - GC - MS),能提供成分信息,但具有破坏性且在形态分析方面受限。新兴的(生物)传感技术在应对这些挑战方面显示出前景。电化学生物传感器利用伏安法和阻抗等原理来检测微塑料及其吸附的污染物,提供了经济高效、便携且灵敏的平台。等离子体技术,包括表面等离子体共振(SPR)和表面增强拉曼光谱(SERS),通过纳米结构增强检测提供高灵敏度和特异性。利用微生物或酶元件的荧光生物传感器能够实时监测塑料降解产物,如聚对苯二甲酸乙二酯(PET)产生的对苯二甲酸。这些创新方法的进步为更准确、可扩展且环境兼容的检测解决方案铺平了道路,有助于改进监测和修复策略。本综述强调了生物传感器作为先进分析方法的潜力,包括一个关于前景的章节,该章节阐述了可能导致环境监测取得重大进展的挑战,强调了在实际条件(样品的成分/基质)下测试新传感技术发展的必要性,而这些实际条件常常被忽视,同时还强调了研究肽作为微塑料传感中的新型识别元件。