Ramada David, Adema Bente, Labib Mohamed, Ter Beek Odyl, Stamatialis Dimitrios
Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, University of Twente, Zuidhorst 28, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
NovaFlux, 1 Wall Street, Princeton, NJ 08540, USA.
Membranes (Basel). 2025 Jan 9;15(1):16. doi: 10.3390/membranes15010016.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients' blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration). This study investigates the development of HF membranes for "outside-in filtration" (OIF) in HD. In OIF, blood flows through the inter-fiber space while dialysate flows within the fiber lumens, reducing the risk of fiber clogging and potentially extending treatment duration. For the OIF mode, the membrane should have a blood-compatible outer selective layer in contact with the patient's blood. We develop HFs for OIF via liquid-induced phase separation using PES/PVP (polyethersulphone/polyvinylpyrrolidone) blends. The fibers' surface morphology (SEM, scanning electron microscopy), chemistry (ATR-FTIR-attenuated total reflection-Fourier transform infrared spectroscopy, XPS-X-ray photoelectron spectroscopy), transport properties, and uremic toxin removal from human plasma are evaluated and compared to commercial HFs. These membranes feature a smooth, hydrophilic outer layer, porous lumen, ultrafiltration coefficient of 13-34 mL m h mmHg, adequate mechanical properties, low albumin leakage, and toxin removal performance on par with commercial membranes in IOF and OIF. They offer potential for more efficient long-term HD by reducing clogging and systemic anticoagulation needs and enhancing treatment time and toxin clearance.
血液透析(HD)是终末期肾病(ESKD)患者的关键治疗方法。由于合成聚合物膜的血液相容性有限以及透析器设计欠佳,长期使用时那里所使用的传统透析器的有效性可能会受到影响。事实上,中空纤维(HF)膜中的血流会引发炎症反应和血栓形成,导致过滤效率降低并限制治疗持续时间,这是患者血液流经每根纤维的内腔而透析液沿纤维间空间(IOF,由内向外过滤)流动的结果。本研究调查了用于血液透析中“由外向内过滤”(OIF)的中空纤维膜的开发情况。在OIF中,血液流经纤维间空间,而透析液在纤维内腔中流动,降低了纤维堵塞的风险,并有可能延长治疗持续时间。对于OIF模式,膜应具有与患者血液接触的血液相容性外选择性层。我们通过使用聚醚砜/聚乙烯吡咯烷酮(PES/PVP)共混物的液致相分离来开发用于OIF的中空纤维。对纤维的表面形态(扫描电子显微镜,SEM)、化学性质(衰减全反射傅里叶变换红外光谱,ATR-FTIR;X射线光电子能谱,XPS)、传输特性以及从人血浆中去除尿毒症毒素的能力进行了评估,并与商用中空纤维进行了比较。这些膜具有光滑的亲水性外层、多孔内腔、13 - 34 mL m h mmHg的超滤系数、足够的机械性能、低白蛋白泄漏率,并且在IOF和OIF中去除毒素的性能与商用膜相当。它们通过减少堵塞和全身抗凝需求以及延长治疗时间和提高毒素清除率,为更高效的长期血液透析提供了潜力。