Deng Siyuan, Shao Han, Shang Hongtao, Pang Lingjin, Chen Xiaomeng, Cao Jingyi, Wang Yi, Zhao Zhao
Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
Vaccines (Basel). 2024 Dec 30;13(1):25. doi: 10.3390/vaccines13010025.
The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion-diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2-3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines.
脂质纳米颗粒(LNP)的内体逃逸对于基于mRNA的高效治疗至关重要。在此,我们提出一种阳离子聚合物胶束(cPM),作为一种具有增强内体逃逸能力的安全且有效的共递送系统。我们通过可逆加成-断裂链转移聚合反应合成了一种阳离子两性二嵌段共聚物,聚(聚(乙二醇)甲基丙烯酸酯-己基甲基丙烯酸酯)-聚(丁基甲基丙烯酸酯-二甲基氨基乙基甲基丙烯酸酯-丙烯酸丙酯)(p(PEGMA-HMA)-p(BMA-DMAEMA-PAA))。然后通过分散-扩散法使用合成的聚合物制备cPM,并通过动态光散射(DLS)和冷冻透射电子显微镜(CryoTEM)进行表征。通过溶血试验评估cPM的膜去稳定活性。我们使用两种最常研究的LNP,即SM102 LNP和Dlin-MC3-DMA LNP,对萤火虫荧光素酶(Fluc)mRNA进行了体内功能测定。cPM的粒径为61.31±0.68 nm,zeta电位为37.76±2.18 mV,在小鼠肌肉注射后,与未使用cPM的对照组相比,cPM在注射部位的萤火虫荧光素酶信号高2-3倍,这表明cPM具有提高mRNA-LNP内体逃逸效率的巨大潜力。所开发的具有增强内体逃逸能力的cPM,为提高递送mRNA的表达效率提供了一种有前景的策略。这种方法提供了一种新颖的替代策略,无需对mRNA-LNP的固有特性进行修饰,从而防止制剂特性发生任何不可预见的变化。因此,这种基于聚合物的纳米材料在基于mRNA的疫苗临床应用中具有巨大潜力。