Suppr超能文献

用于预测呼吸道致敏剂的共培养肺泡模型(ALIsens)在接触皮肤致敏剂和非致敏剂后的反应。

Responses of an Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens) Following Exposure to Skin Sensitizers and Non-Sensitizers.

作者信息

Burla Sabina, Chary Aline, Serchi Tommaso, Cambier Sébastien, Sullivan Kristie, Baker Elizabeth, Sadekar Nikaeta, Gutleb Arno C

机构信息

Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg.

Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania.

出版信息

Toxics. 2024 Dec 31;13(1):29. doi: 10.3390/toxics13010029.

Abstract

In recent years, a global increase in allergy incidence following chemical exposure has been observed. While the process of skin sensitization is well characterized through the adverse outcome pathway (AOP) framework, the immunological mechanisms underlying respiratory sensitization remain less well understood. Respiratory sensitizers are classified as substances of very high concern (SVHC) under the European Union (EU) regulation for the registration, evaluation, authorization and restriction of chemicals (REACH), emphasizing the importance of evaluating respiratory tract sensitization as a critical hazard. However, the existing new approach methodologies (NAMs) for the identification of skin sensitizers lack the capacity to differentiate between skin and respiratory sensitizers. Thus, it is imperative to develop physiologically relevant test systems specifically tailored to assess respiratory sensitizers. This study aimed to evaluate the efficacy of ALIsens, a three-dimensional (3D) alveolar model designed for the identification of respiratory sensitizers and to determine its ability to correctly identify sensitizers. In this study, we used a range of skin sensitizers and non-sensitizers to define the optimal exposure dose, identify biomarkers, and establish tentative thresholds for correct sensitizer classification. The results demonstrate that ALIsens is a promising complex model that could successfully discriminate respiratory sensitizers from skin sensitizers and non-sensitizers. Furthermore, the thymic stromal lymphopoietin receptor (TSLPr) cell surface marker was confirmed as a reliable biomarker for predicting respiratory sensitization hazards.

摘要

近年来,人们观察到化学物质暴露后全球过敏发病率有所上升。虽然皮肤致敏过程已通过不良结局途径(AOP)框架得到充分表征,但呼吸道致敏的免疫机制仍不太清楚。根据欧盟关于化学品注册、评估、授权和限制(REACH)的法规,呼吸道致敏剂被列为高度关注物质(SVHC),这强调了将呼吸道致敏评估作为一种关键危害的重要性。然而,现有的用于识别皮肤致敏剂的新方法学(NAMs)缺乏区分皮肤和呼吸道致敏剂的能力。因此,开发专门用于评估呼吸道致敏剂的生理相关测试系统势在必行。本研究旨在评估ALIsens的功效,ALIsens是一种为识别呼吸道致敏剂而设计的三维(3D)肺泡模型,并确定其正确识别致敏剂的能力。在本研究中,我们使用了一系列皮肤致敏剂和非致敏剂来确定最佳暴露剂量、识别生物标志物,并为正确的致敏剂分类建立暂定阈值。结果表明,ALIsens是一个有前景的复杂模型,能够成功地区分呼吸道致敏剂与皮肤致敏剂和非致敏剂。此外,胸腺基质淋巴细胞生成素受体(TSLPr)细胞表面标志物被确认为预测呼吸道致敏危害的可靠生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3012/11769448/628a131b1151/toxics-13-00029-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验