Suppr超能文献

MgCa(CO)钙镁石碳酸盐上的压力驱动相变

Pressure-driven phase transformations on MgCa(CO) huntite carbonate.

作者信息

Santamaría-Pérez David, Chuliá-Jordán Raquel, Botan-Neto Benedito Donizeti, Bera Ganesh, Pellicer-Porres Julio, Bayarjargal Lkhamsuren, Otero-de-la-Roza Alberto, Popescu Catalin

机构信息

Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de València, Valencia 46100, Spain.

Departamento de Didáctica de las Ciencias Experimentales y Sociales, Universitat de Valencia, 46022, Valencia, Spain.

出版信息

Phys Chem Chem Phys. 2025 Feb 6;27(6):3320-3329. doi: 10.1039/d4cp04200j.

Abstract

Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase. Here we examine the behavior of a polycrystalline natural huntite sample under room-temperature compression up to 38 GPa. Synchrotron X-ray diffraction and Raman spectroscopy experiments were carried out in a diamond-anvil cell using He as a highly hydrostatic pressure transmitting medium. XRD results suggest that the initial 32 huntite structure persists up to 21 GPa. The Raman experiment agrees with this result but also suggests the appearance of structural defects from 10 GPa on. Birch-Murnaghan equation of state parameters were fit to the pressure-volume huntite data resulting in zero-pressure volume of 611.7(2) Å, a bulk modulus of 99.5(11) GPa and a pressure derivative of the bulk modulus of . At 21 GPa, huntite transforms to another trigonal phase (3), designated here as huntite II. This phase persists up to at least 38 GPa, the maximum pressure reached in this study. The major structural differences between huntite and the huntite-II phase involve the tilting of the [CO] units with respect to the basal plane and a rotation, which cause a progressive change in the coordination number of the Ca atoms, from 6 to 9. DFT calculations complement the experimental data, providing new insights into the structural response to high-pressure conditions of this magnesium-calcium double carbonate mineral.

摘要

镁和碳酸钙矿物是地球碳的重要储存库,了解它们在不同条件下的行为对于阐明深部碳储存机制至关重要。水菱镁矿(MgCa(CO)₃)是与白云石一起的两种稳定的钙镁碳酸盐相之一。与方解石型和白云石结构相比,Ca原子独特的阳离子配位环境使水菱镁矿成为密度相对较小的相。在此,我们研究了多晶天然水菱镁矿样品在室温下至38 GPa压力下的行为。使用He作为高静水压压力传递介质,在金刚石对顶砧中进行了同步加速器X射线衍射和拉曼光谱实验。XRD结果表明,初始的水菱镁矿结构在高达21 GPa时保持不变。拉曼实验与该结果一致,但也表明从10 GPa开始出现结构缺陷。将Birch-Murnaghan状态方程参数拟合到水菱镁矿的压力-体积数据,得到零压力体积为611.7(2) ų,体积模量为99.5(11) GPa,体积模量的压力导数为……。在21 GPa时,水菱镁矿转变为另一种三方相(3R),在此指定为水菱镁矿II。该相至少持续到38 GPa,即本研究中达到的最大压力。水菱镁矿和水菱镁矿-II相之间的主要结构差异涉及[CO₃]单元相对于基面的倾斜和旋转,这导致Ca原子的配位数从6逐渐变为9。密度泛函理论(DFT)计算补充了实验数据,为这种镁钙双碳酸盐矿物对高压条件的结构响应提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验