Sánchez-Adriá Isabel-Elena, Prieto Jose A, Sanmartín Gemma, Morard Miguel, García-Ríos Estéfani, Estruch Francisco, Randez-Gil Francisca
Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.
Departament of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Valencia, Spain.
Microb Biotechnol. 2025 Jan;18(1):e70092. doi: 10.1111/1751-7915.70092.
Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.072 to 0.236 h at 41.5°C, a temperature that completely inhibits the growth of the parental strain. The clones were categorised into two groups based on their respiratory competence or deficiency, the latter associated with mtDNA loss, an event seemingly linked to FCNZ and heat tolerance. Genome sequencing and ploidy-level analysis of all strains revealed aneuploidies, copy number variations (CNVs), and single nucleotide polymorphisms (SNPs). Notably, all evolved clones exhibited specific point mutations in MPM1 (P50S) and PDR1 (F749S). CRISPR-Cas9 experiments confirmed the role of the pdr1 mutation in the FCNZ-tolerance phenotype and demonstrated that Mpm1 is required for growth at high temperatures. However, no apparent heat tolerance benefit was observed from single or combined mutations in these genes, supporting the hypothesis that thermotolerance is mediated by multiple interacting mechanisms. In this context, all evolved clones exhibited altered sterol profiles, with differences observed between respiratory-competent and -deficient strains. In conclusion, our experimental evolution generated thermotolerant and fully competent strains and identified factors that could influence fluconazole and heat growth.
甾醇组成在决定酵母细胞耐受高温的能力方面起着关键作用,这是生物技术中的一个重要特性。我们采用了一种靶向进化策略,涉及甾醇生物合成途径的抑制剂氟康唑(FCNZ)和免疫抑制剂FK506,旨在通过改变工业面包酵母群体的甾醇组成来提高其耐热性。这种方法产生了六个分离株,它们能够在液体YPD中增殖,在41.5°C下的μ值范围为0.072至0.236 h,该温度完全抑制亲本菌株的生长。根据呼吸能力或缺陷将这些克隆分为两组,后者与线粒体DNA丢失有关,这一事件似乎与FCNZ和耐热性有关。对所有菌株的基因组测序和倍性水平分析揭示了非整倍体、拷贝数变异(CNV)和单核苷酸多态性(SNP)。值得注意的是,所有进化克隆在MPM1(P50S)和PDR1(F749S)中都表现出特定的点突变。CRISPR-Cas9实验证实了pdr1突变在FCNZ耐受表型中的作用,并证明Mpm1是高温生长所必需的。然而,在这些基因中单个或组合突变未观察到明显的耐热益处,这支持了耐热性由多种相互作用机制介导的假设。在此背景下,所有进化克隆的甾醇谱均发生了改变,在呼吸能力正常和缺陷的菌株之间观察到了差异。总之,我们的实验进化产生了耐热且完全有能力的菌株,并确定了可能影响氟康唑和热生长的因素。