Xu Ke-Fei, Wang Zihao, Cui Macheng, Jiang Yuhan, Li Chengcheng, Wang Zi-Xi, Li Ling-Yi, Jia Chenyang, Zhang Lijie, Wu Fu-Gen
State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
Mudi Meng Honors College, China Pharmaceutical University, Longmian Dadao Road, Nanjing, 211189, P. R. China.
Adv Sci (Weinh). 2025 Mar;12(11):e2411084. doi: 10.1002/advs.202411084. Epub 2025 Jan 24.
Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria. Subsequently, fluorescein isothiocyanate (FITC) molecules are grafted onto BCDs to yield FITC-labeled BCDs (termed CDFs), which can selectively and rapidly (≤5 min) stain bacterial cell wall and particularly target the peptidoglycan component. Strikingly, CDFs achieve superselective visualization of Gram-positive bacteria even in the presence of mammalian cells and Gram-negative bacteria. Furthermore, protoporphyrin (PpIX) molecules are conjugated onto BCDs to yield PpIX-modified BCDs (termed CDPs), which can induce bacterial aggregation and in situ generate singlet oxygen for realizing enhanced antibacterial photodynamic therapy (PDT). At the minimum bactericidal concentration of CDPs (PpIX: 5 µg mL), CDP-mediated PDT disrupts bacterial structure and metabolism pathways, thereby affecting bacterial interactions to eradicate biofilms. Importantly, CDP-mediated PDT efficiently modulates antiinflammatory responses to promote wound healing in the bacteria-infected mice. This study underscores the significance of harnessing renewable and cost-effective biomass resources for preparing Gram-positive bacteria-targeting theranostic agents, which may find potential clinical applications in the future.
革兰氏阳性菌对人类健康构成重大威胁,因此需要制定有针对性的细菌检测和根除策略。然而,目前的方法往往存在靶向特异性差的问题。在此,该研究利用紫米浸出液合成具有麦胚凝集素样残基的生物质碳点(称为BCD),以精确靶向革兰氏阳性菌。随后,将异硫氰酸荧光素(FITC)分子接枝到BCD上,得到FITC标记的BCD(称为CDF),其可以选择性且快速地(≤5分钟)对细菌细胞壁进行染色,尤其靶向肽聚糖成分。引人注目的是,即使在存在哺乳动物细胞和革兰氏阴性菌的情况下,CDF也能实现对革兰氏阳性菌的超选择性可视化。此外,将原卟啉(PpIX)分子缀合到BCD上,得到PpIX修饰的BCD(称为CDP),其可以诱导细菌聚集并原位产生单线态氧,以实现增强的抗菌光动力疗法(PDT)。在CDP的最低杀菌浓度(PpIX:(5)μg/mL)下,CDP介导的PDT破坏细菌结构和代谢途径,从而影响细菌相互作用以根除生物膜。重要的是,CDP介导的PDT有效地调节抗炎反应,以促进细菌感染小鼠的伤口愈合。这项研究强调了利用可再生且经济高效的生物质资源制备靶向革兰氏阳性菌的诊疗试剂的重要性,这些试剂未来可能会有潜在的临床应用。