Zhang Feng, Meng Qiangqiang, Qian Jia-Wei, Chen Jingwei, Dong Wei-Xu, Chen Kai, Cui Yang-Feng, Dou Shi Xue, Chen Li-Feng
Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, PR China.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202425487. doi: 10.1002/anie.202425487. Epub 2025 Feb 5.
Undesirable dendrite growth and side reactions at the electrical double layer (EDL) of Zn/electrolyte interface are critical challenges limiting the performance of aqueous zinc ion batteries. Through density functional theory calculations, we demonstrate that grafting large π-conjugated molecules (e.g. bilirubin, biliverdin, lumirubin, and hemoglobin) onto Zn surface induces preferential adsorption on non-(002) facets, leading to interfacial charge redistribution, upshifted Zn d-band center, and enhanced H fixation capability. Among these, bilirubin (BR) is identified as the most effective, preferentially adsorbing onto non-Zn(002) facets to inhibit hydrogen evolution reaction and promote Zn(002) planar growth during plating. This approach results in average Coulombic efficiency of 99.86 % over 4000 cycles in Zn||BR-1@Cu cells and prolonged lifespan exceeding 1600 h in BR-1@Zn||BR-1@Zn cells at 10 mA cm and 1 mAh cm. Even under harsh conditions of 25 mA cm and 10 mAh cm, BR-1@Zn||BR-1@Zn cell maintains a lifespan of over 400 h. Furthermore, BR-1@Zn||MnO and BR-1@Zn||NVO full cells achieve 76.4 % and 86.1 % capacity retention after 800 and 1400 cycles at 1.0 A g, respectively. This study underscores the importance of grafting large π-conjugated molecules to allow selective Zn(002) exposure, Zn d-band center upshift, and EDL structure regulation, paving the way towards durable Zn anodes.
锌/电解质界面双电层(EDL)处不良的枝晶生长和副反应是限制水系锌离子电池性能的关键挑战。通过密度泛函理论计算,我们证明将大π共轭分子(如胆红素、胆绿素、光胆红素和血红蛋白)接枝到锌表面会诱导在非(002)晶面上优先吸附,导致界面电荷重新分布、锌d带中心上移以及增强的氢固定能力。其中,胆红素(BR)被确定为最有效的,优先吸附在非Zn(002)晶面上以抑制析氢反应并促进电镀过程中Zn(002)平面生长。这种方法使得Zn||BR-1@Cu电池在4000次循环中的平均库仑效率达到99.86%,并且在10 mA cm和1 mAh cm条件下,BR-1@Zn||BR-1@Zn电池的寿命延长超过1600小时。即使在25 mA cm和10 mAh cm的苛刻条件下,BR-1@Zn||BR-1@Zn电池仍保持超过400小时的寿命。此外,BR-1@Zn||MnO和BR-1@Zn||NVO全电池在1.0 A g下分别经过800次和1400次循环后,容量保持率分别达到76.4%和86.1%。这项研究强调了接枝大π共轭分子以实现选择性暴露Zn(002)、锌d带中心上移和双电层结构调控的重要性,为耐用的锌负极铺平了道路。