Ma Xipo, Yu Huaming, Yan Chunshuang, Chen Qihao, Wang Zheng, Chen Yuejiao, Chen Gang, Lv Chade
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
J Colloid Interface Sci. 2024 Jun 15;664:539-548. doi: 10.1016/j.jcis.2024.03.085. Epub 2024 Mar 12.
The issues of dendrite growth, hydrogen evolution reaction, and zinc anode corrosion have significantly hindered the widespread implementation of aqueous zinc-ion batteries (AZIBs). Herein, trace amounts of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) additive is introduced into AZIBs to protect the zinc metal anode. Trace amounts of the TEMPO additive with nitroxyl radical can provide fast Zn transport and anode protection ability by forming an adsorbed molecular layer via Zn-O bond. This interface not only provides strong interfacial compatibility and promotes dynamic transport of Zn, but also induces deposition of Zn along Zn (002) plane. Additionally, the molecular protective layer significantly inhibits hydrogen evolution reaction (HER) and corrosion. The Zn anodes achieve high Coulombic efficiency of up to 99.75 % and long-term plating/stripping of more than 1400 h at 1 mA cm and 0.5 mAh cm. The Zn//Zn symmetric cell can operate continuously for 2500 h at a current density of 1 mA cm and 1 mAh cm, and it can still last for nearly 1400 h even when the current density is increased to 5 mA cm. Furthermore, the Zn//VO full cell using TEMPO/ZnSO electrolyte effectively maintains a maximum capacity retention rate of 53.4 % even after 1500 cycles at 5 A/g. This innovative strategy introduces trace additive with free radicals into the electrolyte, which may help to achieve large-scale, ultra-long-life, and low-cost AZIBs.
枝晶生长、析氢反应和锌负极腐蚀等问题严重阻碍了水系锌离子电池(AZIBs)的广泛应用。在此,将痕量的2,2,6,6-四甲基哌啶-1-氧基(TEMPO)添加剂引入到AZIBs中以保护锌金属负极。痕量的带有硝酰自由基的TEMPO添加剂可通过形成Zn-O键的吸附分子层来提供快速的锌传输和负极保护能力。该界面不仅提供了强界面兼容性并促进了锌的动态传输,还诱导锌沿Zn(002)平面沉积。此外,分子保护层显著抑制了析氢反应(HER)和腐蚀。锌负极在1 mA cm和0.5 mAh cm下实现了高达99.75%的高库仑效率以及超过1400小时的长期电镀/剥离。Zn//Zn对称电池在1 mA cm和1 mAh cm的电流密度下可连续运行2500小时,即使电流密度增加到5 mA cm,仍可持续近1400小时。此外,使用TEMPO/ZnSO电解质的Zn//VO全电池即使在5 A/g下经过1500次循环后仍能有效保持53.4%的最大容量保持率。这种创新策略将带有自由基的痕量添加剂引入电解质中,这可能有助于实现大规模、超长寿命和低成本的AZIBs。