Yan Shuting, Schlick Tamar
Department of Chemistry, New York University, New York, NY 10003.
Department of Mathematics and Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417479122. doi: 10.1073/pnas.2417479122. Epub 2025 Jan 24.
Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting. However, prior studies and our RNA-As-Graphs analysis coupled to chemical reactivity experiments revealed other folds, including a different pseudoknot. Although structural plasticity has been proposed to play a key role in frameshifting, paths between different FSE RNA folds have not been yet identified. Here, we capture atomic-level transition pathways between two key FSE pseudoknots by transition path sampling coupled to Markov State Modeling and our BOLAS free energy method. We reveal multiple transition paths within a heterogeneous, multihub conformational landscape. A shared folding mechanism involves RNA stem unpairing followed by a 5-chain end release. Significantly, this pseudoknot transition critically tunes the tension through the RNA spacer region and places the viral RNA in the narrow ribosomal channel. Our work further explains the role of the alternative pseudoknot in ribosomal pausing and clarifies why the experimentally captured pseudoknot is preferred for frameshifting. Our capturing of this large-scale transition of RNA secondary and tertiary structure highlights the complex pathways of biomolecules and the inherent multifarious aspects that viruses developed to ensure virulence and survival. This enhanced understanding of viral frameshifting also provides insights to target key transitions for therapeutic applications. Our methods are generally applicable to other large-scale biomolecular transitions.
移码是许多病毒(包括冠状病毒)用来从紧凑的RNA基因组产生病毒蛋白的一种基本机制。它由移码元件(FSE)中的特定RNA折叠促进,该元件已成为一个重要的治疗靶点。对于严重急性呼吸综合征冠状病毒2(SARS-CoV-2),已鉴定出一种特定的三茎假结来刺激移码。然而,先前的研究以及我们结合化学反应性实验的RNA-As-Graphs分析揭示了其他折叠,包括一种不同的假结。尽管有人提出结构可塑性在移码中起关键作用,但不同FSE RNA折叠之间的路径尚未确定。在这里,我们通过结合马尔可夫状态建模的过渡路径采样和我们的BOLAS自由能方法,捕捉了两个关键FSE假结之间的原子级过渡路径。我们揭示了在异质、多枢纽构象景观中的多条过渡路径。一种共同的折叠机制包括RNA茎解开,随后是5链末端释放。值得注意的是,这种假结过渡通过RNA间隔区严格调节张力,并将病毒RNA置于狭窄的核糖体通道中。我们的工作进一步解释了替代假结在核糖体暂停中的作用,并阐明了为什么实验捕获的假结更有利于移码。我们对RNA二级和三级结构这种大规模转变的捕捉突出了生物分子的复杂路径以及病毒为确保毒力和生存而发展出的固有多方面特性。对病毒移码的这种深入理解也为治疗应用中靶向关键转变提供了见解。我们的方法通常适用于其他大规模生物分子转变。