Suppr超能文献

SARS-CoV-2 框架移位 RNA 元件的结构改变突变。

Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.

机构信息

Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, P. R. China.

Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York.

出版信息

Biophys J. 2021 Mar 16;120(6):1040-1053. doi: 10.1016/j.bpj.2020.10.012. Epub 2020 Oct 21.

Abstract

With the rapid rate of COVID-19 infections and deaths, treatments and cures besides hand washing, social distancing, masks, isolation, and quarantines are urgently needed. The treatments and vaccines rely on the basic biophysics of the complex viral apparatus. Although proteins are serving as main drug and vaccine targets, therapeutic approaches targeting the 30,000 nucleotide RNA viral genome form important complementary approaches. Indeed, the high conservation of the viral genome, its close evolutionary relationship to other viruses, and the rise of gene editing and RNA-based vaccines all argue for a focus on the RNA agent itself. One of the key steps in the viral replication cycle inside host cells is the ribosomal frameshifting required for translation of overlapping open reading frames. The RNA frameshifting element (FSE), one of three highly conserved regions of coronaviruses, is believed to include a pseudoknot considered essential for this ribosomal switching. In this work, we apply our graph-theory-based framework for representing RNA secondary structures, "RAG (or RNA-As-Graphs)," to alter key structural features of the FSE of the SARS-CoV-2 virus. Specifically, using RAG machinery of genetic algorithms for inverse folding adapted for RNA structures with pseudoknots, we computationally predict minimal mutations that destroy a structurally important stem and/or the pseudoknot of the FSE, potentially dismantling the virus against translation of the polyproteins. Our microsecond molecular dynamics simulations of mutant structures indicate relatively stable secondary structures. These findings not only advance our computational design of RNAs containing pseudoknots, they pinpoint key residues of the SARS-CoV-2 virus as targets for antiviral drugs and gene editing approaches.

摘要

随着 COVID-19 感染和死亡人数的迅速增加,除了洗手、保持社交距离、戴口罩、隔离和检疫之外,还急需治疗方法和疫苗。这些治疗方法和疫苗依赖于复杂病毒仪器的基本生物物理学。虽然蛋白质是主要的药物和疫苗靶点,但针对 30000 个核苷酸 RNA 病毒基因组的治疗方法形成了重要的互补方法。事实上,病毒基因组的高度保守性、与其他病毒的密切进化关系以及基因编辑和基于 RNA 的疫苗的兴起,都表明应该关注 RNA 本身。宿主细胞内病毒复制周期的关键步骤之一是核糖体移码,这是翻译重叠开放阅读框所必需的。RNA 移码元件(FSE)是冠状病毒的三个高度保守区域之一,据信它包含一个假结,被认为对这种核糖体转换至关重要。在这项工作中,我们应用了基于图论的代表 RNA 二级结构的框架“RAG(或 RNA 作为图)”,来改变 SARS-CoV-2 病毒 FSE 的关键结构特征。具体来说,我们使用遗传算法的 RAG 机制进行反向折叠,该机制适用于具有假结的 RNA 结构,我们通过计算预测了最小突变,这些突变破坏了 FSE 的结构重要茎和/或假结,从而有可能破坏病毒翻译多聚蛋白。我们对突变结构的微秒分子动力学模拟表明,这些结构具有相对稳定的二级结构。这些发现不仅推进了我们对含有假结的 RNA 的计算设计,还确定了 SARS-CoV-2 病毒的关键残基作为抗病毒药物和基因编辑方法的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9160/8492449/4d254d5d6575/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验