Suppr超能文献

漆酶35增强了猕猴桃的木质化作用以及对猕猴桃细菌性溃疡病菌感染的抗性。

LACCASE35 enhances lignification and resistance against Pseudomonas syringae pv. actinidiae infection in kiwifruit.

作者信息

Li Yawei, Zhang Dongle, Wang Xiaojie, Bai Fuxi, Li Rui, Zhou Rongrong, Wu Shunyuan, Fang Zemin, Liu Wei, Huang Lili, Liu Pu

机构信息

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, P.R. China.

School of Life Science, Anhui University, Hefei 230039, P.R. China.

出版信息

Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf040.

Abstract

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production. Lignin deposition in infected cells serves as a defense mechanism, effectively suppressing pathogen growth. However, the underlying process remains unclear. In this study, we determined that Psa infection leads to a significant increase in S-lignin accumulation in kiwifruit. The S/G ratio in lignin was higher in a Psa-resistant cultivar than in a Psa-sensitive cultivar. Furthermore, kiwifruit laccase 35 (AcLac35), encoding an enzyme in the lignin biosynthesis pathway with characteristic laccase activity, showed tissue-specific expression in plants and was upregulated following infection by Psa. Overexpressing AcLac35 in kiwifruit leaves resulted in greater lignin content than in wild-type leaves, leading to the formation of thicker cell walls, and also activated plant-pathogen interactions and MAPK pathways, thereby enhancing resistance against Psa infection. Yeast 1-hybrid assays, dual-LUC reporter assays, electrophoretic mobility shift assays, and transient injection experiments indicated that SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 9 (AcSPL9) can bind to the AcLac35 promoter, thereby positively regulating its expression. Moreover, overexpression of AcSPL9 increased lignin accumulation in kiwifruit leaves, enhancing resistance to Psa, while virus-induced gene silencing of AcSPL9 expression reduced this resistance. Our findings reveal the function of AsSPL9-AcLac35 in kiwifruit, providing insight into enhancing resistance against Psa in kiwifruit.

摘要

猕猴桃细菌性溃疡病是一种由丁香假单胞菌猕猴桃致病变种(Psa)引起的极具破坏性的病害,严重影响猕猴桃(猕猴桃属植物)的生产。感染细胞中的木质素沉积作为一种防御机制,可有效抑制病原体生长。然而,其潜在过程仍不清楚。在本研究中,我们确定Psa感染会导致猕猴桃中S-木质素积累显著增加。木质素中的S/G比值在Psa抗性品种中高于Psa敏感品种。此外,猕猴桃漆酶35(AcLac35)编码木质素生物合成途径中一种具有典型漆酶活性的酶,在植物中表现出组织特异性表达,且在被Psa感染后上调。在猕猴桃叶片中过表达AcLac35导致木质素含量高于野生型叶片,导致细胞壁增厚,还激活了植物-病原体相互作用和MAPK途径,从而增强了对Psa感染的抗性。酵母单杂交试验、双荧光素酶报告试验、电泳迁移率变动试验和瞬时注射实验表明,类SQUAMOSA启动子结合蛋白9(AcSPL9)可以与AcLac35启动子结合,从而正向调节其表达。此外,AcSPL9的过表达增加了猕猴桃叶片中木质素的积累,增强了对Psa的抗性,而AcSPL9表达的病毒诱导基因沉默降低了这种抗性。我们的研究结果揭示了AcSPL9-AcLac35在猕猴桃中的功能,为增强猕猴桃对Psa的抗性提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验