Wendering Philipp, Andreou Gregory M, Laitinen Roosa A E, Nikoloski Zoran
Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.
Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany.
New Phytol. 2025 Jul;247(1):178-190. doi: 10.1111/nph.20420. Epub 2025 Jan 24.
Temperature is a critical environmental factor affecting nearly all plant processes, including growth, development, and yield. Yet, despite decades of research, we lack the ability to predict plant performance at different temperatures, limiting the development of climate-resilient crops. Further, there is a pressing need to bridge the gap between the prediction of physiological and molecular traits to improve our understanding and manipulation of plant temperature responses. Here, we developed the first enzyme-constrained model of Arabidopsis thaliana's metabolism, facilitating predictions of growth-related phenotypes at different temperatures. We showed that the model can be employed for in silico identification of genes that affect plant growth at suboptimal growth temperature. Using mutant lines, we validated the genes predicted to affect plant growth, demonstrating the potential of metabolic modeling in accurately predicting plant thermal responses. The temperature-dependent enzyme-constrained metabolic model provides a template that can be used for developing sophisticated strategies to engineer climate-resilient crops.
温度是影响几乎所有植物进程的关键环境因素,包括生长、发育和产量。然而,尽管经过了数十年的研究,我们仍缺乏预测植物在不同温度下表现的能力,这限制了气候适应性作物的培育。此外,迫切需要弥合生理和分子性状预测之间的差距,以增进我们对植物温度响应的理解和调控。在此,我们开发了首个受酶约束的拟南芥代谢模型,有助于预测不同温度下与生长相关的表型。我们表明,该模型可用于在计算机上鉴定在次优生长温度下影响植物生长的基因。利用突变株系,我们验证了预测会影响植物生长的基因,证明了代谢建模在准确预测植物热响应方面的潜力。温度依赖性酶约束代谢模型提供了一个模板,可用于制定培育气候适应性作物的复杂策略。