Suppr超能文献

利用机器学习预测儿科新冠病毒肺炎患者的住院情况(PrepCOVID-机器学习)

Utilizing machine learning to predict hospital admissions for pediatric COVID-19 patients (PrepCOVID-Machine).

作者信息

Liew Chuin-Hen, Ong Song-Quan, Ng David Chun-Ern

机构信息

Hospital Tuanku Ampuan Najihah, Jalan Melang, 72000, Kuala Pilah, Negeri Sembilan, Malaysia.

Institute for Tropical Biology and Conservation, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.

出版信息

Sci Rep. 2025 Jan 24;15(1):3131. doi: 10.1038/s41598-024-80538-4.

Abstract

The COVID-19 pandemic has burdened healthcare systems globally. To curb high hospital admission rates, only patients with genuine medical needs are admitted. However, machine learning (ML) models to predict COVID-19 hospitalization in Asian children are lacking. This study aimed to develop and validate ML models to predict pediatric COVID-19 hospitalization. We collected secondary data with 2200 patients and 65 variables from Malaysian aged 0 to 12 with COVID-19 between 1st February 2020 and 31st March 2022. The sample was partitioned into training, internal, and external validation groups. Recursive Feature Elimination (RFE) was employed for feature selection, and we trained seven supervised classifiers. Grid Search was used to optimize the hyperparameters of each algorithm. The study analyzed 1988 children and 30 study variables after data were processed. The RFE algorithm selected 12 highly predicted variables for COVID-19 hospitalization, including age, male sex, fever, cough, rhinorrhea, shortness of breath, vomiting, diarrhea, seizures, body temperature, chest indrawing, and abnormal breath sounds. With external validation, Adaptive Boosting was the highest-performing classifier (AUROC = 0.95) to predict COVID-19 hospital admission in children. We validated AdaBoost as the best to predict COVID-19 hospitalization among children. This model may assist front-line clinicians in making medical disposition decisions.

摘要

新冠疫情给全球医疗系统带来了沉重负担。为控制高住院率,仅收治有真正医疗需求的患者。然而,目前缺乏用于预测亚洲儿童新冠住院情况的机器学习(ML)模型。本研究旨在开发并验证用于预测儿童新冠住院情况的ML模型。我们收集了2020年2月1日至2022年3月31日期间马来西亚2200名0至12岁新冠患儿的二次数据及65个变量。样本被分为训练组、内部验证组和外部验证组。采用递归特征消除(RFE)进行特征选择,并训练了七个监督分类器。使用网格搜索优化每种算法的超参数。数据处理后,该研究分析了1988名儿童和30个研究变量。RFE算法选择了12个对新冠住院有高度预测性的变量,包括年龄、男性、发热、咳嗽、流涕、呼吸急促、呕吐、腹泻、惊厥、体温、胸凹陷和呼吸音异常。经外部验证,自适应提升算法是预测儿童新冠住院情况表现最佳的分类器(曲线下面积=0.95)。我们验证了AdaBoost是预测儿童新冠住院情况的最佳模型。该模型可能有助于一线临床医生做出医疗处置决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77e4/11760342/f1a1d8bc367f/41598_2024_80538_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验