Suppr超能文献

基于丹麦19世纪晚期地形图自动生成土地类别图层并与当代地图对比,评估空间明确的长期景观动态。

Assessing spatially explicit long-term landscape dynamics based on automated production of land category layers from Danish late nineteenth-century topographic maps in comparison with contemporary maps.

作者信息

Levin Gregor, Groom Geoff, Svenningsen Stig Roar

机构信息

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.

Department of Agroecology, Aarhus University, C. F. Møllers Allé 8, Bygning 1110, 8000, Aarhus C, Denmark.

出版信息

Environ Monit Assess. 2025 Jan 25;197(2):195. doi: 10.1007/s10661-025-13634-1.

Abstract

Historical topographical maps contain valuable, spatially and thematically detailed information about past landscapes. Yet, for analyses of landscape dynamics through geographical information systems, it is necessary to "unlock" this information via map processing. For two study areas in northern and central Jutland, Denmark, we apply object-based image analysis, vector GIS, colour image segmentation, and machine learning processes to produce machine-readable layers for the land use and land cover categories forest, wetland, heath, dune sand, and water bodies from topographic maps from the late nineteenth century. Obtained overall accuracy was 92.3%. A comparison with a contemporary map revealed spatially explicit landscape dynamics dominated by transitions from heath and wetland to agriculture and forest and from heath and dune sand to forest. However, dune sand was also characterised by more complex transitions to heath and dry grassland, which can be related to active prevention of sand drift but that can also be biased by different categorisations of dune sand between the historical and contemporary data. We conclude that automated production of machine-readable layers of land use and land cover categories from historical topographical maps offers a resource-efficient alternative to manual vectorisation and is particularly useful for spatially explicit assessments of long-term landscape dynamics. Our results also underline that an understanding of mapped categories in both historical and contemporary maps is critical to the interpretation of landscape dynamics.

摘要

历史地形图包含了有关过去景观的有价值的、空间和主题详细信息。然而,为了通过地理信息系统分析景观动态,有必要通过地图处理来“解锁”这些信息。对于丹麦日德兰半岛北部和中部的两个研究区域,我们应用基于对象的图像分析、矢量地理信息系统、彩色图像分割和机器学习过程,从19世纪后期的地形图中生成土地利用和土地覆盖类别(森林、湿地、石南荒地、沙丘沙地和水体)的机器可读图层。获得的总体准确率为92.3%。与当代地图的比较揭示了空间明确的景观动态,其主要特征是从石南荒地和湿地向农业和森林的转变,以及从石南荒地和沙丘沙地向森林的转变。然而,沙丘沙地的特征还在于向石南荒地和干旱草原的更复杂转变,这可能与积极防止风沙漂移有关,但也可能受到历史数据和当代数据之间沙丘沙地不同分类的影响。我们得出结论,从历史地形图自动生成土地利用和土地覆盖类别的机器可读图层,为手动矢量化提供了一种资源高效的替代方法,对于空间明确评估长期景观动态特别有用。我们的结果还强调,理解历史地图和当代地图中的映射类别对于解释景观动态至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec2/11761518/b8dea4e6c90f/10661_2025_13634_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验