Suppr超能文献

构建复合模型以提高定量超声估算肝脂肪分数的准确性。

Construction of a Compound Model to Enhance the Accuracy of Hepatic Fat Fraction Estimation with Quantitative Ultrasound.

作者信息

Boglárka Zsély, Zsombor Zita, Rónaszéki Aladár D, Egresi Anna, Stollmayer Róbert, Himsel Marco, Bérczi Viktor, Kalina Ildikó, Werling Klára, Győri Gabriella, Maurovich-Horvat Pál, Folhoffer Anikó, Hagymási Krisztina, Kaposi Pál Novák

机构信息

Department of Radiology, Medical Imaging Centre, Semmelweis University, 1082 Budapest, Hungary.

Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary.

出版信息

Diagnostics (Basel). 2025 Jan 17;15(2):203. doi: 10.3390/diagnostics15020203.

Abstract

we evaluated regression models based on quantitative ultrasound (QUS) parameters and compared them with a vendor-provided method for calculating the ultrasound fat fraction (USFF) in metabolic dysfunction-associated steatotic liver disease (MASLD). We measured the attenuation coefficient (AC) and the backscatter-distribution coefficient (BSC-D) and determined the USFF during a liver ultrasound and calculated the magnetic resonance imaging proton-density fat fraction (MRI-PDFF) and steatosis grade (S0-S4) in a combined retrospective-prospective cohort. We trained multiple models using single or various QUS parameters as independent variables to forecast MRI-PDFF. Linear and nonlinear models were trained during five-time repeated three-fold cross-validation in a retrospectively collected dataset of 60 MASLD cases. We calculated the models' Pearson correlation (r) and the intraclass correlation coefficient (ICC) in a prospectively collected test set of 57 MASLD cases. The linear multivariable model (r = 0.602, ICC = 0.529) and USFF (r = 0.576, ICC = 0.54) were more reliable in S0- and S1-grade steatosis than the nonlinear multivariable model (r = 0.492, ICC = 0.461). In S2 and S3 grades, the nonlinear multivariable (r = 0.377, ICC = 0.32) and AC-only (r = 0.375, ICC = 0.313) models' approximated correlation and agreement surpassed that of the multivariable linear model (r = 0.394, ICC = 0.265). We searched a QUS parameter grid to find the optimal thresholds (AC ≥ 0.84 dB/cm/MHz, BSC-D ≥ 105), above which switching from a linear (r = 0.752, ICC = 0.715) to a nonlinear multivariable (r = 0.719, ICC = 0.641) model could improve the overall fit (r = 0.775, ICC = 0.718). The USFF and linear multivariable models are robust in diagnosing low-grade steatosis. Switching to a nonlinear model could enhance the fit to MRI-PDFF in advanced steatosis.

摘要

我们评估了基于定量超声(QUS)参数的回归模型,并将其与供应商提供的用于计算代谢功能障碍相关脂肪性肝病(MASLD)中超声脂肪分数(USFF)的方法进行比较。我们在肝脏超声检查期间测量了衰减系数(AC)和背散射分布系数(BSC-D),并确定了USFF,同时在一个回顾性-前瞻性队列中计算了磁共振成像质子密度脂肪分数(MRI-PDFF)和脂肪变性分级(S0-S4)。我们使用单个或多个QUS参数作为自变量训练了多个模型,以预测MRI-PDFF。在一个回顾性收集的包含60例MASLD病例的数据集中,通过五次重复的三折交叉验证训练了线性和非线性模型。我们在一个前瞻性收集的包含57例MASLD病例的测试集中计算了模型的皮尔逊相关系数(r)和组内相关系数(ICC)。线性多变量模型(r = 0.602,ICC = 0.529)和USFF(r = 0.576,ICC = 0.54)在S0和S1级脂肪变性中比非线性多变量模型(r = 0.492,ICC = 0.461)更可靠。在S2和S3级中,非线性多变量模型(r = 0.377,ICC = 0.32)和仅AC模型(r = 0.375,ICC = 0.313)的近似相关性和一致性超过了多变量线性模型(r = 0.394,ICC = 0.265)。我们搜索了一个QUS参数网格以找到最佳阈值(AC≥0.84 dB/cm/MHz,BSC-D≥105),高于该阈值时从线性模型(r = 0.752,ICC = 0.715)切换到非线性多变量模型(r = 0.719,ICC = 0.641)可以改善整体拟合度(r = 0.775,ICC = 0.718)。USFF和线性多变量模型在诊断低级别脂肪变性方面表现稳健。切换到非线性模型可以提高在高级别脂肪变性中与MRI-PDFF的拟合度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d4/11763894/9617bbe48c41/diagnostics-15-00203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验