Suppr超能文献

支持贝叶斯网络对胰腺癌患者生存情况进行建模的专家判断

Expert Judgment Supporting a Bayesian Network to Model the Survival of Pancreatic Cancer Patients.

作者信息

Secchettin Erica, Paiella Salvatore, Azzolina Danila, Casciani Fabio, Salvia Roberto, Malleo Giuseppe, Gregori Dario

机构信息

University of Verona, 37134 Verona, Italy.

Department of Surgery, Dentistry, Paediatrics and Gynecology, University of Verona, 37134 Verona, Italy.

出版信息

Cancers (Basel). 2025 Jan 17;17(2):301. doi: 10.3390/cancers17020301.

Abstract

: Pancreatic cancer is known for its poor prognosis. The most effective treatment combines surgery with peri-operative chemotherapy. Current prognostic tools are designed to predict patient outcomes and inform treatment decisions based on collected data. Bayesian networks (BNs) can integrate objective data with subjective clinical insights, such as expert opinions, or they can be independently based on either element. This pilot study is one of the first efforts to incorporate expert opinions into a prognostic model using a Bayesian framework. : A clinical hybrid BN was selected to model the long-term overall survival of pancreatic cancer patients. The SHELF expert judgment method was employed to enhance the BN's effectiveness. This approach involved a two-phase protocol: an initial single-center pilot phase followed by a definitive international phase. : Experts generally agreed on the distribution shape among the 12 clinically relevant predictive variables identified for the BN. However, discrepancies were noted in the tumor size, age, and ASA score nodes. With regard to expert concordance for each node, tumor size, and ASA score exhibited absolute concordance, indicating a strong consensus among experts. Ca19.9 values and resectability status showed high concordance, reflecting a solid agreement among the experts. The remaining nodes showed acceptable concordance. This project introduces a novel clinical hybrid Bayesian network (BN) that incorporates expert elicitation and clinical variables present at diagnosis to model the survival of pancreatic cancer patients. This model aims to provide research-based evidence for more reliable prognosis predictions and improved decision-making, addressing the limitations of existing survival prediction models. A validation process will be essential to evaluate the model's performance and clinical applicability.

摘要

胰腺癌以其预后差而闻名。最有效的治疗方法是手术与围手术期化疗相结合。当前的预后工具旨在预测患者的预后,并根据收集到的数据为治疗决策提供依据。贝叶斯网络(BNs)可以将客观数据与主观临床见解(如专家意见)相结合,或者也可以仅基于其中任何一个要素独立构建。这项试点研究是首批尝试使用贝叶斯框架将专家意见纳入预后模型的努力之一。

选择了一个临床混合贝叶斯网络来对胰腺癌患者的长期总生存进行建模。采用SHELF专家判断方法来提高贝叶斯网络的有效性。该方法包括一个两阶段方案:初始的单中心试点阶段,随后是最终的国际阶段。

专家们普遍就为贝叶斯网络确定的12个临床相关预测变量的分布形状达成一致。然而,在肿瘤大小、年龄和美国麻醉医师协会(ASA)评分节点上发现了差异。关于每个节点的专家一致性,肿瘤大小和ASA评分表现出绝对一致性,表明专家之间有强烈的共识。糖类抗原19-9(Ca19.9)值和可切除性状态显示出高度一致性,反映了专家之间的可靠共识。其余节点显示出可接受的一致性。

该项目引入了一种新颖的临床混合贝叶斯网络(BN),它结合了专家意见和诊断时存在的临床变量,以对胰腺癌患者的生存情况进行建模。该模型旨在为更可靠的预后预测和改进决策提供基于研究的证据,解决现有生存预测模型的局限性。验证过程对于评估模型的性能和临床适用性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca94/11764457/06750ba8eace/cancers-17-00301-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验