Lin Yuanwei, Chen Hetuo, Wang Longfei, An Liqiong, Qin Xianpeng, Zhou Guohong
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.
Materials (Basel). 2025 Jan 15;18(2):367. doi: 10.3390/ma18020367.
The integration, miniaturization, and high frequency of microwave vacuum electronics put forward higher requirements for heat-conducting and wave-absorbing integrated materials. However, these materials must balance the dispersion and isolation of wave-absorbing components to optimize absorption while maintaining the continuity of thermal conductivity pathways with low defect rates and minimal interfaces. This presents a significant challenge in achieving both high thermal conductivity and efficient wave absorption simultaneously. Here, AlN/FeNi microwave-attenuating ceramics were synthesized via non-pressure sintering in a nitrogen atmosphere. The influence of FeNi content (0-20 wt%) on the density, phase composition, microstructure, microwave-absorption properties and thermal conductivity of the composites was investigated. AlN/FeNi composites consist primarily of an AlN phase with FeNi, Fe, AlYO, and AlYO as secondary phases, and the microstructure is uniform and dense. As the FeNi content rises from 0 to 20 wt%, the density of the composites sintered at 1800 °C × 2 h increases from 3.3 to 3.7 g/cm. Their X-band (2-18 GHz) dielectric constant goes up from 6.5 to 8.5, the dielectric loss factor rises from 0.1 to 0.9, and thermal conductivity diminishes from 130 to 123 W/m·K. Upon reaching an FeNi content of 20 wt%, the composite achieves a minimum reflection loss of -39.1 dB at 9.5 GHz, with over 90% absorption across an effective absorption bandwidth covering 2.5 GHz. It exhibits excellent impedance matching, electromagnetic wave-attenuation properties, a relative density of 98.6%, and a thermal conductivity of 123 W m K. The prepared AlN/FeNi composites, with integrated outstanding microwave-absorption capabilities and thermal conductivity, holds great promise for applications in 5G communications, aerospace, and artificial intelligence.
微波真空电子学的集成化、小型化和高频化对导热吸波一体化材料提出了更高的要求。然而,这些材料必须平衡吸波组分的分散性和隔离性,以优化吸收性能,同时保持低缺陷率和最小界面的热导率路径的连续性。这在同时实现高导热率和高效吸波方面提出了重大挑战。在此,通过在氮气气氛中无压烧结合成了AlN/FeNi微波衰减陶瓷。研究了FeNi含量(0-20 wt%)对复合材料密度、相组成、微观结构、微波吸收性能和热导率的影响。AlN/FeNi复合材料主要由AlN相和FeNi、Fe、AlYO及AlYO作为第二相组成,微观结构均匀致密。随着FeNi含量从0 wt%增加到20 wt%,在1800 °C×2 h烧结的复合材料密度从3.3 g/cm增加到3.7 g/cm。其X波段(2-18 GHz)介电常数从6.5增加到8.5,介电损耗因子从0.1增加到0.9,热导率从130 W/m·K降低到123 W/m·K。当FeNi含量达到20 wt%时,复合材料在9.5 GHz处实现了-39.1 dB的最小反射损耗,在覆盖2.5 GHz的有效吸收带宽内吸收率超过90%。它具有优异的阻抗匹配、电磁波衰减性能、98.6%的相对密度和123 W/(m·K)的热导率。所制备的AlN/FeNi复合材料兼具优异的微波吸收能力和热导率,在5G通信、航空航天和人工智能领域具有广阔的应用前景。