Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Nature. 2014 Apr 17;508(7496):373-7. doi: 10.1038/nature13184.
The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 ± 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity (0.23 ± 0.03 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.
热电效应可实现热能和电能之间的直接、可逆转换,为废热发电提供了可行途径。热电材料的效率由无量纲优值 ZT(其中 Z 为优值,T 为绝对温度)决定,它控制着热转换的卡诺效率。在通常高于 2.5 的高阈值之上的提高对于商业应用具有重要意义,特别是对于不含 Pb 和 Te 的化合物。在这里,我们报告了在 923 K 下,SnSe 单晶沿室温正交晶胞 b 轴方向测量的前所未有的 ZT 值 2.6±0.3。该材料沿 c 轴也表现出高 ZT 值 2.3±0.3,但沿 a 轴的 ZT 值显著降低至 0.8±0.2。我们将 b 轴方向上的 ZT 值显著提高归因于 SnSe 中固有超低的晶格热导率。SnSe 的层状结构源于扭曲的岩盐结构,具有异常高的格林艾森参数,反映了非谐和各向异性键合。我们将 SnSe 中异常低的晶格热导率(在 973 K 时为 0.23±0.03 W·m(-1)·K(-1))归因于非谐性。这些发现强调了通过非晶化来实现高热电性能的替代策略。