Suppr超能文献

用于能量收集应用的具有宽接收角的偏振不敏感高效超表面

Polarization-Insensitive, High-Efficiency Metasurface with Wide Reception Angle for Energy Harvesting Applications.

作者信息

Amer Abdulrahman Ahmed Ghaleb, Othman Nurmiza, Bait-Suwailamn Mohammed M, Sapuan Syarfa Zahirah, Salem Ali Ahmed Ali, Salh Adeb

机构信息

Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat 86400, Johor, Malaysia.

Communication and Information Research Center, Sultan Qaboos University, Muscat 123, Oman.

出版信息

Sensors (Basel). 2025 Jan 13;25(2):429. doi: 10.3390/s25020429.

Abstract

This research presents an innovative polarization-insensitive metasurface (MS) harvester designed for energy harvesting applications at 5 GHz, capable of operating efficiently over wide reception angles. The proposed MS features a novel wheel-shaped resonator array whose symmetrical structure ensures insensitivity to the polarization of incident electromagnetic (EM) waves, enabling efficient energy absorption and minimizing reflections. Unlike conventional designs, the metasurface achieves near-unity harvesting efficiency, exceeds 94% under normal incidence, and maintains superior performance across various incident angles for TE and TM polarizations. To validate the design, a 5 × 5-unit cell array of the MS structure was fabricated and experimentally tested, demonstrating excellent agreement between simulation and measurement results. This work significantly advances metasurface-based energy harvesting by combining polarization insensitivity, wide-angle efficiency, and high absorption, making it a compelling solution for powering wireless sensor networks in next-generation applications.

摘要

本研究提出了一种创新的偏振不敏感超表面(MS)收集器,专为5GHz的能量收集应用而设计,能够在宽接收角度范围内高效运行。所提出的超表面具有新颖的轮形谐振器阵列,其对称结构确保对入射电磁(EM)波的偏振不敏感,从而实现高效的能量吸收并使反射最小化。与传统设计不同,该超表面实现了近乎单位的收集效率,在垂直入射时超过94%,并且在TE和TM偏振的各种入射角下都保持优异的性能。为了验证该设计,制作了一个5×5单元的MS结构阵列并进行了实验测试,结果表明模拟结果与测量结果高度吻合。这项工作通过结合偏振不敏感性、广角效率和高吸收率,显著推进了基于超表面的能量收集技术,使其成为下一代应用中为无线传感器网络供电的极具吸引力的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f88/11768721/0053c1f7a4b5/sensors-25-00429-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验