Suppr超能文献

通过将激光雷达和立体相机数据与插值地面平面融合来增强越野地形估计

Enhancing Off-Road Topography Estimation by Fusing LIDAR and Stereo Camera Data with Interpolated Ground Plane.

作者信息

Sten Gustav, Feng Lei, Möller Björn

机构信息

Engineering Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

出版信息

Sensors (Basel). 2025 Jan 16;25(2):509. doi: 10.3390/s25020509.

Abstract

Topography estimation is essential for autonomous off-road navigation. Common methods rely on point cloud data from, e.g., Light Detection and Ranging sensors (LIDARs) and stereo cameras. Stereo cameras produce dense point clouds with larger coverage but lower accuracy. LIDARs, on the other hand, have higher accuracy and longer range but much less coverage. LIDARs are also more expensive. The research question examines whether incorporating LIDARs can significantly improve stereo camera accuracy. Current sensor fusion methods use LIDARs' raw measurements directly; thus, the improvement in estimation accuracy is limited to only LIDAR-scanned locations The main contribution of our new method is to construct a reference ground plane through the interpolation of LIDAR data so that the interpolated maps have similar coverage as the stereo camera's point cloud. The interpolated maps are fused with the stereo camera point cloud via Kalman filters to improve a larger section of the topography map. The method is tested in three environments: controlled indoor, semi-controlled outdoor, and unstructured terrain. Compared to the existing method without LIDAR interpolation, the proposed approach reduces average error by 40% in the controlled environment and 67% in the semi-controlled environment, while maintaining large coverage. The unstructured environment evaluation confirms its corrective impact.

摘要

地形估计对于自主越野导航至关重要。常用方法依赖于来自例如激光雷达传感器(LIDAR)和立体相机的点云数据。立体相机可生成覆盖范围更大但精度较低的密集点云。另一方面,激光雷达具有更高的精度和更远的探测距离,但覆盖范围要小得多。激光雷达的成本也更高。该研究问题探讨了结合激光雷达是否能显著提高立体相机的精度。当前的传感器融合方法直接使用激光雷达的原始测量数据;因此,估计精度的提高仅限于激光雷达扫描的位置。我们新方法的主要贡献是通过对激光雷达数据进行插值来构建参考地面平面,以便插值地图具有与立体相机点云相似的覆盖范围。通过卡尔曼滤波器将插值地图与立体相机点云融合,以改进更大范围的地形图。该方法在三种环境中进行了测试:受控室内环境、半受控室外环境和非结构化地形。与没有激光雷达插值的现有方法相比,所提出的方法在受控环境中将平均误差降低了40%,在半受控环境中降低了67%,同时保持了较大的覆盖范围。非结构化环境评估证实了其校正效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eb8/11769091/126a32da1acc/sensors-25-00509-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验