Suppr超能文献

一种基于简单机器学习的定量构效关系模型,用于预测FLT3酪氨酸激酶的pIC抑制值

A Simple Machine Learning-Based Quantitative Structure-Activity Relationship Model for Predicting pIC Inhibition Values of FLT3 Tyrosine Kinase.

作者信息

Alcázar Jackson J, Sánchez Ignacio, Merino Cristian, Monasterio Bruno, Sajuria Gaspar, Miranda Diego, Díaz Felipe, Campodónico Paola R

机构信息

Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile.

出版信息

Pharmaceuticals (Basel). 2025 Jan 14;18(1):96. doi: 10.3390/ph18010096.

Abstract

Acute myeloid leukemia (AML) presents significant therapeutic challenges, particularly in cases driven by mutations in the FLT3 tyrosine kinase. This study aimed to develop a robust and user-friendly machine learning-based quantitative structure-activity relationship (QSAR) model to predict the inhibitory potency (pIC values) of FLT3 inhibitors, addressing the limitations of previous models in dataset size, diversity, and predictive accuracy. Using a dataset which was 14 times larger than those employed in prior studies (1350 compounds with 1269 molecular descriptors), we trained a random forest regressor, chosen due to its superior predictive performance and resistance to overfitting. Rigorous internal validation via leave-one-out and 10-fold cross-validation yielded Q2 values of 0.926 and 0.922, respectively, while external validation on 270 independent compounds resulted in an R value of 0.941 with a standard deviation of 0.237. Key molecular descriptors influencing the inhibitor potency were identified, thereby improving the interpretability of structural requirements. Additionally, a user-friendly computational tool was developed to enable rapid prediction of pIC values and facilitate ligand-based virtual screening, leading to the identification of promising FLT3 inhibitors. These results represent a significant advancement in the field of FLT3 inhibitor discovery, offering a reliable, practical, and efficient approach for early-stage drug development, potentially accelerating the creation of targeted therapies for AML.

摘要

急性髓系白血病(AML)带来了重大的治疗挑战,尤其是在由FLT3酪氨酸激酶突变驱动的病例中。本研究旨在开发一种强大且用户友好的基于机器学习的定量构效关系(QSAR)模型,以预测FLT3抑制剂的抑制效力(pIC值),解决先前模型在数据集大小、多样性和预测准确性方面的局限性。使用一个比先前研究中使用的数据集大14倍的数据集(1350种化合物,具有1269个分子描述符),我们训练了一个随机森林回归器,选择它是因为其卓越的预测性能和抗过拟合能力。通过留一法和10倍交叉验证进行的严格内部验证分别产生了0.926和0.922的Q2值,而对270种独立化合物的外部验证得到了0.941的R值,标准差为0.237。确定了影响抑制剂效力的关键分子描述符,从而提高了结构要求的可解释性。此外,还开发了一个用户友好的计算工具,以实现pIC值的快速预测并促进基于配体的虚拟筛选,从而鉴定出有前景的FLT3抑制剂。这些结果代表了FLT3抑制剂发现领域的重大进展,为早期药物开发提供了一种可靠、实用且高效的方法,有可能加速AML靶向疗法的创制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c5/11768337/e1f265ea0d7c/pharmaceuticals-18-00096-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验