Alam Md Najib, Azam Siraj, Yun Jongwan, Park Sang-Shin
School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea.
Polymers (Basel). 2025 Jan 7;17(2):127. doi: 10.3390/polym17020127.
Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities. For NR-based composites containing 2 vol% CNTs, mechanical properties, such as elastic modulus (2.24 MPa), tensile strength (12.48 MPa), and fracture toughness (26.92 MJ/m), show significant improvements of 125%, 215%, and 164%, respectively, compared to unfilled rubber. Similarly, for NBR-based composites, the elastic modulus (5.46 MPa), tensile strength (13.47 MPa), and fracture toughness (82.89 MJ/m) increase by 94%, 22%, and 65%, respectively, over the unfilled system. Although NBR-based composites exhibit higher mechanical properties, NR systems show more significant improvements, suggesting stronger chemical bonding between NR chains and CNTs, as evidenced by dynamic mechanical, X-ray diffraction, thermogravimetric, and thermodynamic analyses. The NBR-based composite at 1 vol% CNT content exhibits 261% higher piezoresistive strain sensitivity (GF = 65 at 0% ≤ Δε ≤ 200%) compared to the NR-based composite (GF = 18 at 0% ≤ Δε ≤ 200%). The highest gauge factor of 39,125 (1000% ≤ Δε ≤ 1220) was achieved in NBR-based composites with 1 vol% CNT content. However, 1.5 vol% CNT content in NBR provides better strain sensitivity and linearity than other composites. Additionally, NBR demonstrates superior electromechanical actuation properties, with 1317% higher actuation displacement and 276% higher electromechanical pressure compared to NR at an applied electric field of 12 kV. Due to the stronger chemical bonding between the rubber and CNT, NR-based composites are more suitable for dynamic mechanical applications. In contrast, NBR-based CNT composites are ideal for stretchable electromechanical sensors and actuators, owing to the high dielectric constant and polarizable functional groups in NBR.
碳纳米材料,特别是碳纳米管(CNT),作为增强填料广泛应用于橡胶复合材料中,用于先进的机械和电气应用。然而,橡胶官能团及其与碳纳米管相互作用的影响仍未得到充分研究。本研究调查了用碳纳米管在两种常见二烯橡胶中制备的电活性弹性体复合材料:天然橡胶(NR)和丙烯腈 - 丁二烯橡胶(NBR),它们各自具有不同的官能团。对于含有2体积%碳纳米管的基于NR的复合材料,其机械性能,如弹性模量(2.24MPa)、拉伸强度(12.48MPa)和断裂韧性(26.92MJ/m),与未填充橡胶相比,分别显著提高了125%、215%和164%。同样,对于基于NBR的复合材料,弹性模量(5.46MPa)、拉伸强度(13.47MPa)和断裂韧性(82.89MJ/m)比未填充体系分别提高了94%、22%和65%。尽管基于NBR的复合材料表现出更高的机械性能,但基于NR的体系显示出更显著的改善,这表明NR链与碳纳米管之间存在更强的化学键,动态力学、X射线衍射、热重和热力学分析证明了这一点。与基于NR的复合材料(在0%≤Δε≤200%时GF = 18)相比,含1体积%碳纳米管的基于NBR的复合材料的压阻应变灵敏度高261%(在0%≤Δε≤200%时GF = 65)。在含1体积%碳纳米管的基于NBR的复合材料中实现了最高的应变片系数39,125(1000%≤Δε≤1220)。然而,NBR中1.5体积%的碳纳米管含量比其他复合材料提供更好的应变灵敏度和线性度。此外,在12kV的外加电场下,NBR表现出优异的机电驱动性能,其驱动位移比NR高1317%,机电压力比NR高276%。由于橡胶与碳纳米管之间更强的化学键,基于NR的复合材料更适合动态机械应用。相比之下,基于NBR的碳纳米管复合材料由于NBR中的高介电常数和可极化官能团,是可拉伸机电传感器和致动器的理想选择。