Bai Yukun, Kikugawa Gota, Kishimoto Naoki
Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
Institute of Fluid Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan.
Polymers (Basel). 2025 Jan 9;17(2):148. doi: 10.3390/polym17020148.
Molecular simulations offer valuable insights into thermosetting polymers' microstructures and interactions with small molecules, aiding in the development of advanced materials. In this study, we design two cyanate resin models featuring monomers of different sizes and employ a previously developed method to generate crosslinked structures. We then analyze their crosslinking processes and physicochemical properties. Using quantum chemistry calculations and a GCMC/MD approach, we investigate CO adsorption. Our results show that monomer size does not significantly affect the crosslinking process and provides a degree of polymerization as 83.8 ± 0.3% vs. 76.7 ± 1.4%, but it does influence key properties, such as the glass transition temperature (520 K vs. 420 K) and Young's modulus (2.32 GPa vs. 1.77 GPa). Moreover, CO adsorption differs between the two models: the introduction of propyl ether moieties lowers by around 70% CO uptake, indicating that specific adsorption sites impact gas adsorption. This study demonstrates a promising strategy for designing and optimizing thermosetting polymers with controllable gas separation and storage capabilities.
分子模拟为热固性聚合物的微观结构以及与小分子的相互作用提供了有价值的见解,有助于先进材料的开发。在本研究中,我们设计了两种具有不同尺寸单体的氰酸酯树脂模型,并采用先前开发的方法生成交联结构。然后我们分析它们的交联过程和物理化学性质。使用量子化学计算和GCMC/MD方法,我们研究了CO吸附。我们的结果表明,单体尺寸对交联过程没有显著影响,聚合度分别为83.8±0.3%和76.7±1.4%,但它确实会影响关键性能,如玻璃化转变温度(520K对420K)和杨氏模量(2.32GPa对1.77GPa)。此外,两种模型的CO吸附情况不同:丙基醚基团的引入使CO吸收量降低了约70%,这表明特定的吸附位点会影响气体吸附。本研究展示了一种有前景的策略,用于设计和优化具有可控气体分离和存储能力的热固性聚合物。