Esteves David Seixas, Melo Amanda, Peliteiro Bruno, Durães Nelson, Paiva Maria C, Sequeiros Elsa W
Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal.
CeNTI, Centre for Nanotechnology and Advanced Materials, 4760-034 Vila Nova de Famalicão, Portugal.
Polymers (Basel). 2025 Jan 16;17(2):210. doi: 10.3390/polym17020210.
Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility. This blend, suitable for bi-component extrusion processes, exemplifies the role of advanced materials in combining electrical conductivity, mechanical flexibility, and processability, which are essential for wearable technology. The composite optimisation balanced MWCNT (2.5, 5, 7.5, and 10 wt.%) and TPE (0, 25, and 50 wt.%) in a PP matrix. There was a significant decrease in electrical resistivity between 2.5 and 5 wt.% MWCNT, with electrical resistivity ranging from (7.64 ± 4.03)10 to (1.15 ± 0.10)10 Ω·m. Combining the composite with 25 wt.% TPE improved the flexibility, while with 50 wt.% TPE decreased tensile strength and hindered the masterbatch pelletising process. The final stage involved laminating the composite filament electrodes, with a 5 wt.% MWCNT/PP/(25 wt.% TPE) core and a TPE sheath, into a textile triboelectric impact detection sensor. This sensor, responding to contact and separation, produced an output voltage of approximately 5 V peak-to-peak per filament and 15 V peak-to-peak with five filaments under a 100 N force over 78.54 cm. This preliminary study demonstrates an innovative approach to enhance the flexibility of conductive materials for smart textile applications, enabling the development of triboelectric sensor electrodes with potential applications in impact detection, fall monitoring, and motion tracking.
智能纺织品带来了重大的技术进步,但其发展必须在传统纺织性能与电子特性之间取得平衡。为应对这一挑战,本研究引入了一种柔性导电复合材料,该材料可通过连续双组分挤出工艺制造,非常适合用作传感器电极。主要目标是为长丝芯部创建一种复合材料,将多壁碳纳米管(MWCNT)、聚丙烯(PP)和热塑性弹性体(TPE)结合起来,针对导电性和柔韧性进行优化。这种适用于双组分挤出工艺的共混物,体现了先进材料在结合导电性、机械柔韧性和可加工性方面的作用,而这些特性对于可穿戴技术至关重要。该复合材料的优化是在PP基体中平衡MWCNT(2.5、5、7.5和10重量%)和TPE(0、25和50重量%)。在MWCNT含量为2.5至5重量%之间,电阻率显著下降,电阻率范围为(7.64±4.03)×10至(1.15±0.10)×10Ω·m。将复合材料与25重量%的TPE结合可提高柔韧性,而与50重量%的TPE结合则会降低拉伸强度并阻碍母粒造粒过程。最后阶段是将具有5重量%MWCNT/PP/(25重量%TPE)芯部和TPE护套的复合长丝电极层压成纺织摩擦电冲击检测传感器。该传感器对接触和分离做出响应,在100 N力作用下,每根长丝的输出电压峰峰值约为5 V,五根长丝时为15 V峰峰值,作用距离为78.54 cm。这项初步研究展示了一种创新方法,可提高用于智能纺织品应用的导电材料的柔韧性,从而开发出在冲击检测、跌倒监测和运动跟踪方面具有潜在应用的摩擦电传感器电极。