Stanciu Nicoleta-Violeta, Stan Felicia, Sandu Ionut-Laurentiu, Fetecau Catalin, Turcanu Adriana-Madalina
Center of Excellence Polymer Processing, Dunarea de Jos University of Galati, 47 Domneasca, 800 008 Galati, Romania.
Polymers (Basel). 2021 Jan 7;13(2):187. doi: 10.3390/polym13020187.
In this paper, nanocomposites based on polypropylene (PP) filled with up to 5 wt.% of multi-walled carbon nanotubes (MWCNTs) were investigated for determining the material property data used in numerical simulation of manufacturing processes such as the injection molding and extrusion. PP/MWCNT nanocomposite pellets were characterized for rheological behavior, crystallinity, specific volume and thermal conductivity, while injection-molded samples were characterized for mechanical and electrical properties. The addition of MWCNTs does not significantly change the melting and crystallization behavior of the PP/MWCNT nanocomposites. The effect of MWCNTs on melt shear viscosity is more pronounced at low shear rates and MWCNT loadings of 1-5 wt.%. However, with the addition of up to 5 wt.% of MWCNTs, the PP/MWCNT nanocomposite still behaves like a non-Newtonian fluid. The specific volume of the PP/MWCNT nanocomposites decreases with increasing MWCNT loading, especially in the MWCNT range of 1-5 wt.%, indicating better dimensional stability. The thermal conductivity, depending on the pressure, MWCNT wt.% and temperature, did not exceed 0.35 W/m·K. The PP/MWCNT nanocomposite is electrical non-conductive up to 3 wt.%, whereas after the percolating path is created, the nanocomposite with 5 wt.% becomes semi-conductive with an electrical conductivity of 10 S/m. The tensile modulus, tensile strength and stress at break increase with increasing MWCNT loading, whereas the elongation at break significantly decreases with increasing MWCNT loading. The Cross and modified 2-domain Tait models are suitable for predicting the melt shear viscosity and specific volume as a function of MWCNTs, respectively. These results enable users to integrate the PP/MWCNT nanocomposites into computer aided engineering analysis.
本文研究了填充高达5 wt.%多壁碳纳米管(MWCNTs)的聚丙烯(PP)基纳米复合材料,以确定用于注塑成型和挤出等制造工艺数值模拟的材料性能数据。对PP/MWCNT纳米复合颗粒的流变行为、结晶度、比容和热导率进行了表征,同时对注塑样品的力学和电学性能进行了表征。MWCNTs的添加并没有显著改变PP/MWCNT纳米复合材料的熔融和结晶行为。MWCNTs对熔体剪切粘度的影响在低剪切速率和1-5 wt.%的MWCNT负载量下更为明显。然而,添加高达5 wt.%的MWCNTs后,PP/MWCNT纳米复合材料仍表现为非牛顿流体。PP/MWCNT纳米复合材料的比容随着MWCNT负载量的增加而减小,特别是在1-5 wt.%的MWCNT范围内,表明尺寸稳定性更好。热导率取决于压力、MWCNT wt.%和温度,不超过0.35 W/m·K。PP/MWCNT纳米复合材料在3 wt.%以下是不导电的,而在形成渗流路径后,5 wt.%的纳米复合材料变成了电导率为10 S/m的半导电材料。拉伸模量、拉伸强度和断裂应力随着MWCNT负载量的增加而增加,而断裂伸长率随着MWCNT负载量的增加而显著降低。Cross模型和修正的双域Tait模型分别适用于预测熔体剪切粘度和比容随MWCNTs的变化。这些结果使用户能够将PP/MWCNT纳米复合材料集成到计算机辅助工程分析中。