文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites.

作者信息

Stanciu Nicoleta-Violeta, Stan Felicia, Sandu Ionut-Laurentiu, Fetecau Catalin, Turcanu Adriana-Madalina

机构信息

Center of Excellence Polymer Processing, Dunarea de Jos University of Galati, 47 Domneasca, 800 008 Galati, Romania.

出版信息

Polymers (Basel). 2021 Jan 7;13(2):187. doi: 10.3390/polym13020187.


DOI:10.3390/polym13020187
PMID:33430190
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7825608/
Abstract

In this paper, nanocomposites based on polypropylene (PP) filled with up to 5 wt.% of multi-walled carbon nanotubes (MWCNTs) were investigated for determining the material property data used in numerical simulation of manufacturing processes such as the injection molding and extrusion. PP/MWCNT nanocomposite pellets were characterized for rheological behavior, crystallinity, specific volume and thermal conductivity, while injection-molded samples were characterized for mechanical and electrical properties. The addition of MWCNTs does not significantly change the melting and crystallization behavior of the PP/MWCNT nanocomposites. The effect of MWCNTs on melt shear viscosity is more pronounced at low shear rates and MWCNT loadings of 1-5 wt.%. However, with the addition of up to 5 wt.% of MWCNTs, the PP/MWCNT nanocomposite still behaves like a non-Newtonian fluid. The specific volume of the PP/MWCNT nanocomposites decreases with increasing MWCNT loading, especially in the MWCNT range of 1-5 wt.%, indicating better dimensional stability. The thermal conductivity, depending on the pressure, MWCNT wt.% and temperature, did not exceed 0.35 W/m·K. The PP/MWCNT nanocomposite is electrical non-conductive up to 3 wt.%, whereas after the percolating path is created, the nanocomposite with 5 wt.% becomes semi-conductive with an electrical conductivity of 10 S/m. The tensile modulus, tensile strength and stress at break increase with increasing MWCNT loading, whereas the elongation at break significantly decreases with increasing MWCNT loading. The Cross and modified 2-domain Tait models are suitable for predicting the melt shear viscosity and specific volume as a function of MWCNTs, respectively. These results enable users to integrate the PP/MWCNT nanocomposites into computer aided engineering analysis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/a8b71459cfcb/polymers-13-00187-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/7cfb92d48a80/polymers-13-00187-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/71c4a04d1339/polymers-13-00187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/359d993dae42/polymers-13-00187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/82bb66236d4f/polymers-13-00187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/be3d4d14496e/polymers-13-00187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/6e4aa96a9f18/polymers-13-00187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/0400520ce3ea/polymers-13-00187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/ec9d69b96348/polymers-13-00187-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/a5d8ca18dd3c/polymers-13-00187-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/411aaadbd882/polymers-13-00187-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/0878e665963f/polymers-13-00187-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/ba7eddd71c84/polymers-13-00187-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/8cb2fafdabe0/polymers-13-00187-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/88ee268b22be/polymers-13-00187-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/9d0038084a1f/polymers-13-00187-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/a8b71459cfcb/polymers-13-00187-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/7cfb92d48a80/polymers-13-00187-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/71c4a04d1339/polymers-13-00187-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/359d993dae42/polymers-13-00187-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/82bb66236d4f/polymers-13-00187-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/be3d4d14496e/polymers-13-00187-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/6e4aa96a9f18/polymers-13-00187-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/0400520ce3ea/polymers-13-00187-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/ec9d69b96348/polymers-13-00187-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/a5d8ca18dd3c/polymers-13-00187-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/411aaadbd882/polymers-13-00187-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/0878e665963f/polymers-13-00187-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/ba7eddd71c84/polymers-13-00187-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/8cb2fafdabe0/polymers-13-00187-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/88ee268b22be/polymers-13-00187-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/9d0038084a1f/polymers-13-00187-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61c0/7825608/a8b71459cfcb/polymers-13-00187-g016.jpg

相似文献

[1]
Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites.

Polymers (Basel). 2021-1-7

[2]
Mechanical, Electrical and Rheological Behavior of Ethylene-Vinyl Acetate/Multi-Walled Carbon Nanotube Composites.

Polymers (Basel). 2019-8-2

[3]
Experimental Investigation of the Melt Shear Viscosity, Specific Volume and Thermal Conductivity of Low-Density Polyethylene/Multi-Walled Carbon Nanotube Composites Using Capillary Flow.

Polymers (Basel). 2020-5-28

[4]
Analysis of Viscoelastic Behavior of Polypropylene/Carbon Nanotube Nanocomposites by Instrumented Indentation.

Polymers (Basel). 2020-10-29

[5]
Effect of Recycling on the Mechanical, Thermal and Rheological Properties of Polypropylene/Carbon Nanotube Composites.

Polymers (Basel). 2022-12-1

[6]
High-Performance PEEK/MWCNT Nanocomposites: Combining Enhanced Electrical Conductivity and Nanotube Dispersion.

Polymers (Basel). 2024-2-21

[7]
Liquid-State and Solid-State Properties of Nanotube/Polypropylene Nanocomposites Elaborated via a Simple Procedure.

Nanomaterials (Basel). 2013-3-6

[8]
Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability.

Nanomaterials (Basel). 2018-4-22

[9]
Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites.

Polymers (Basel). 2020-7-28

[10]
Enhanced Functional Properties of Low-Density Polyethylene Nanocomposites Containing Hybrid Fillers of Multi-Walled Carbon Nanotubes and Nano Carbon Black.

Polymers (Basel). 2020-6-16

引用本文的文献

[1]
The Effect of Multi-Walled Carbon Nanotubes on the Material Properties of Polyamide 66 Nanocomposites.

Polymers (Basel). 2025-5-12

[2]
Polypropylene Modified with Carbon Nanomaterials: Structure, Properties and Application (A Review).

Polymers (Basel). 2025-2-17

[3]
Exploring the Effect of Annealing on PLA/Carbon Nanotube Nanocomposites: In Search of Efficient PLA/MWCNT Nanocomposites for Electromagnetic Shielding.

Polymers (Basel). 2025-1-20

[4]
Development of Thermoplastic Bi-Component Electrodes for Triboelectric Impact Detection in Smart Textile Applications.

Polymers (Basel). 2025-1-16

[5]
Advancements in carbon nanotube-polymer composites: Enhancing properties and applications through advanced manufacturing techniques.

Heliyon. 2024-8-16

[6]
Structure and Mechanical Properties of iPP-Based Nanocomposites Crystallized under High Pressure.

Nanomaterials (Basel). 2024-4-4

[7]
Mechanical Recycling of Ethylene-Vinyl Acetate/Carbon Nanotube Nanocomposites: Processing, Thermal, Rheological, Mechanical and Electrical Behavior.

Polymers (Basel). 2023-1-23

[8]
Tailoring Nylon 6/Acrylonitrile-Butadiene-Styrene Nanocomposites for Application against Electromagnetic Interference: Evaluation of the Mechanical, Thermal and Electrical Behavior, and the Electromagnetic Shielding Efficiency.

Int J Mol Sci. 2022-8-12

[9]
Enhancing Mechanical Properties of Graft-Type Nanocomposites Using Organically Modified SiO and Polypropylene Containing Reactive Methoxy Groups.

Polymers (Basel). 2022-1-30

[10]
Rheological Properties Related to Extrusion of Polyolefins.

Polymers (Basel). 2021-2-4

本文引用的文献

[1]
Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites.

Polymers (Basel). 2020-7-28

[2]
Experimental Investigation of the Melt Shear Viscosity, Specific Volume and Thermal Conductivity of Low-Density Polyethylene/Multi-Walled Carbon Nanotube Composites Using Capillary Flow.

Polymers (Basel). 2020-5-28

[3]
Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring.

Nanomaterials (Basel). 2020-4-24

[4]
Mechanical, Electrical and Rheological Behavior of Ethylene-Vinyl Acetate/Multi-Walled Carbon Nanotube Composites.

Polymers (Basel). 2019-8-2

[5]
Effect of Matrix and Graphite Filler on Thermal Conductivity of Industrially Feasible Injection Molded Thermoplastic Composites.

Polymers (Basel). 2019-1-8

[6]
Polymer Nanocomposites-A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers.

Materials (Basel). 2016-4-1

[7]
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.

Science. 2000-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索