Liu Shuming, Suo Yan, Wang Jinghuizi, Chen Binglin, Wang Kaili, Yang Xiaoyu, Zhu Yaokun, Zhang Jiaxing, Lu Mengchu, Liu Yunqing
Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.
School of Resources and Environment, Yili Normal University, Yining 835000, China.
Plants (Basel). 2025 Jan 17;14(2):256. doi: 10.3390/plants14020256.
The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities. The results showed that the PS0510 treatment significantly increased plant height (93.70 cm, +40.83%) and dry weight (2.98 g, +100%). Additionally, antioxidant enzyme activities improved across treatments for L. roots. Physicochemical analyses revealed enhanced soil organic matter and nutrient levels, including ammonium nitrogen, phosphorus, and effective potassium. Using 16S rRNA sequencing and molecular ecological network techniques, we found that PS-MPs altered the structure and function of the rhizosphere microbial community associated with L. The PS1005 treatment notably increased microbial diversity and displayed the most complex ecological network, while PS1010 led to reduced network complexity and more negative interactions. Linear discriminant analysis effect size (LEfSe) analysis identified biomarkers at various taxonomic levels, reflecting the impact of PS-MPs on microbial community structure. Mantel tests indicated positive correlations between microbial diversity and soil antioxidant enzyme activity, as well as relationships between soil physicochemical properties and enzyme activity. Predictions of gene function revealed that PS-MP treatments modified carbon and nitrogen cycling pathways, with PS1005 enhancing methanogenesis genes () and PS1010 negatively affecting denitrification genes (, ). This study provides evidence of the complex effects of PS-MPs on soil health and agroecosystem functioning, highlighting their potential to alter soil properties and microbial communities, thereby affecting plant growth.
微塑料(MPs)在农业生态系统中的广泛存在对土壤健康和植物生长构成了重大威胁。本研究调查了不同浓度和尺寸的聚苯乙烯微塑料(PS-MPs)对[植物名称未给出]的株高、干重、抗氧化酶活性、土壤理化性质和根际微生物群落的影响。结果表明,PS0510处理显著增加了株高(93.70厘米,增长40.83%)和干重(2.98克,增长100%)。此外,[植物名称未给出]根系各处理的抗氧化酶活性均有所提高。理化分析表明,土壤有机质和养分水平有所提高,包括铵态氮、磷和有效钾。利用16S rRNA测序和分子生态网络技术,我们发现PS-MPs改变了与[植物名称未给出]相关的根际微生物群落的结构和功能。PS1005处理显著增加了微生物多样性,并呈现出最复杂的生态网络,而PS1010导致网络复杂性降低和更多的负相互作用。线性判别分析效应大小(LEfSe)分析确定了不同分类水平上的生物标志物,反映了PS-MPs对微生物群落结构的影响。Mantel检验表明微生物多样性与土壤抗氧化酶活性之间存在正相关,以及土壤理化性质与酶活性之间的关系。基因功能预测表明,PS-MP处理改变了碳和氮循环途径,PS1005增强了甲烷生成基因([具体基因未给出]),而PS1010对反硝化基因([具体基因未给出],[具体基因未给出])产生负面影响。本研究提供了PS-MPs对土壤健康和农业生态系统功能具有复杂影响的证据,突出了它们改变土壤性质和微生物群落从而影响植物生长的潜力。