Suppr超能文献

利用病毒RNA加工的致命弱点开发新型抗病毒药物。

Exploiting the Achilles' Heel of Viral RNA Processing to Develop Novel Antivirals.

作者信息

Zahedi Amiri Ali, Ahmed Choudhary, Dahal Subha, Grosso Filomena, Leng Haomin, Stoilov Peter, Mangos Maria, Toutant Johanne, Shkreta Lulzim, Attisano Liliana, Chabot Benoit, Brown Martha, Huesca Mario, Cochrane Alan

机构信息

Virocarb Inc., Toronto, ON M8V 3Y3, Canada.

Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.

出版信息

Viruses. 2024 Dec 31;17(1):54. doi: 10.3390/v17010054.

Abstract

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression. In this report, we document 5342191 as a potent inhibitor of adenovirus, coronavirus, and influenza replication. In each case, 5342191-mediated reduction in virus replication was associated with altered viral RNA accumulation and loss of viral structural protein expression. Interestingly, while resistant viruses were rapidly isolated for compounds targeting either virus-encoded proteases or polymerases, we have not yet isolated 5342191-resistant variants of coronavirus or influenza. As with HIV-1, 5342191's inhibition of coronaviruses and influenza is mediated through the activation of specific cell signaling networks, including GPCR and/or MAPK signaling pathways that ultimately affect SR kinase expression. Together, these studies highlight the therapeutic potential of compounds that target cellular processes essential for the replication of multiple viruses. Not only do these compounds hold promise as broad-spectrum antivirals, but they also offer the potential of greater resilience in combating viral infections.

摘要

病毒感染的治疗选择有限,而且事实证明病毒很容易对许多现有疗法产生耐药性,这凸显了我们防御系统中的一个重大弱点。为应对这一挑战,我们探索了调节细胞RNA代谢过程作为抗病毒开发的替代模式。此前,小分子5342191被确定为HIV-1复制的有效抑制剂,它通过改变病毒RNA积累,且剂量对宿主基因表达影响最小。在本报告中,我们证明5342191是腺病毒、冠状病毒和流感病毒复制的有效抑制剂。在每种情况下,5342191介导的病毒复制减少都与病毒RNA积累改变和病毒结构蛋白表达缺失有关。有趣的是,虽然针对病毒编码蛋白酶或聚合酶的化合物很快就分离出了耐药病毒,但我们尚未分离出冠状病毒或流感病毒的5342191耐药变体。与HIV-1一样,5342191对冠状病毒和流感的抑制作用是通过激活特定的细胞信号网络介导的,包括最终影响SR激酶表达的GPCR和/或MAPK信号通路。总之,这些研究突出了针对多种病毒复制所必需的细胞过程的化合物的治疗潜力。这些化合物不仅有望成为广谱抗病毒药物,而且在对抗病毒感染方面还具有更强的抵抗力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bc7/11768839/f31cf6ecc615/viruses-17-00054-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验