Ma Xiaoyu, Zhang Yan, Zhou Awu, Jia Yutong, Xie Zhenghe, Ding Lifeng, Li Jian-Rong
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
J Colloid Interface Sci. 2025 May;685:696-705. doi: 10.1016/j.jcis.2025.01.125. Epub 2025 Jan 16.
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO photoreduction. Impressively, MIL-125@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g h) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125 and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125, promoting a spatial synergy between CO reduction on MIL-125 and HO oxidation on UiO-66. Compared with MIL-125@UiO-66 with exposed {1 1 0} facet and MIL-125@UiO-66 with exposed {0 0 1} facet, MIL-125@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.
合理调控光催化剂中的界面结构是提高二氧化碳(CO₂)还原光催化性能的一种很有前景的策略。然而,调控多组分异质结的界面结构仍然是一个挑战。在此,开发了一种将异质结与晶面工程相结合的策略来调控基于金属有机框架(MOF)的异质结的界面结构。制备了一系列具有暴露特定晶面的核壳结构UiO-66(Zr-MOF)负载MIL-125(Ti-MOF)异质结,以提高光催化还原CO₂过程中光生电子-空穴的分离效率。令人印象深刻的是,具有暴露{1 1 1}晶面的MIL-125@UiO-66在可见光照射下,无需任何光敏剂/牺牲剂,就表现出优异的CO₂产率(56.4 μmol g⁻¹ h⁻¹)和选择性(99%),分别是单独的MIL-125和UiO-66的1.4倍和11.3倍。II型异质结在物理空间中显著增强了光生电子-空穴的分离。光生电子从UiO-66中的Zr迁移到MIL-125中的Ti,促进了MIL-125上的CO₂还原与UiO-66上的H₂O氧化之间的空间协同作用。与具有暴露{1 1 0}晶面的MIL-125@UiO-66和具有暴露{0 0 1}晶面的MIL-125@UiO-66相比,具有暴露{1 1 1}晶面的MIL-125@UiO-66提高了表面活性Ti位点的暴露程度,从而增强了对CO₂的吸附/活化,以生成*COOH中间体。这项工作为设计基于MOF的异质结光催化剂以提高光催化性能提供了一种有效策略。