Suppr超能文献

以天然黄铁矿和生物质为原料制备的FeS@BC作为过二硫酸盐活化剂用于磺胺嘧啶降解。

FeS@BC prepared from natural pyrite and biomass as peroxydisulfate activator for sulfadiazine degradation.

作者信息

Hao Jintian, Han Zhengyan, Wang Hanlin, Chu Ziyang, Chen Tianhu, Liu Haibo, Zou Xuehua, Chen Dong, Wang Hao, Sun Fuwei

机构信息

Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.

School of Civil and Hydraulic Engineering, Bengbu University, Bengbu, 233030, China.

出版信息

Environ Res. 2025 Apr 1;270:120936. doi: 10.1016/j.envres.2025.120936. Epub 2025 Jan 23.

Abstract

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification. The results indicate that FeS@WBC with carbon defects and oxygenated functional groups facilitate the dissolution of Fe and the generation of ·OH and ·SO. Additionally, the electron-rich the thiophene S facilitate the regeneration of Fe(II). In the FeS@WBC/PDS system, 90.3% of SDZ degradation could be achieved under optimal conditions: FeS@WBC = 0.5 g L, SDZ = 10 mg L, PDS = 2.0 mM, initial solution pH = 7.0. In addition, FeS@WBC/PDS system exhibits strong resistance to interference from Cl, and NO, while elevated concentrations of HCO, HPO, and HA hinder SDZ degradation. The FeS@WBC/PDS system shows excellent selectivity and recoverability. Quenching experiments and electron spin resonance (ESR) reveal the involvement of ·OH, ·SO, and O in the degradation of SDZ within FeS@WBC/PDS system. Furthermore, four possible degradation pathways for SDZ were proposed based on density functional theory (DFT) and liquid chromatography-mass spectrometry (LC-MS) analysis, while assessing the toxicity of degradation intermediates. This study not only introduces a novel catalytic system for the efficient degradation of antibiotic-contaminated wastewater, but also provides a theoretical foundation for the development and application of iron sulfide-biomass composite catalysts.

摘要

磺胺类药物(SAs)的高效降解是废水处理面临的一项重大挑战。为解决这一问题,通过煅烧黄铁矿和生物质的混合物制备了FeS@BC,并用于活化过二硫酸盐(PDS)以降解磺胺嘧啶(SDZ)。通过拉曼光谱、X射线光电子能谱(XPS)、总铁溶解量和自由基定量研究了碳源(麦秸、稻壳和玉米芯)对FeS@BC催化活性的影响。结果表明,具有碳缺陷和含氧官能团的FeS@WBC促进了铁的溶解以及·OH和·SO的生成。此外,富电子的噻吩硫促进了Fe(II)的再生。在FeS@WBC/PDS体系中,在最佳条件下(FeS@WBC = 0.5 g L,SDZ = 10 mg L,PDS = 2.0 mM,初始溶液pH = 7.0),SDZ的降解率可达90.3%。此外,FeS@WBC/PDS体系对Cl和NO的干扰具有较强的抗性,而较高浓度的HCO、HPO和HA会阻碍SDZ的降解。FeS@WBC/PDS体系具有优异的选择性和可回收性。猝灭实验和电子自旋共振(ESR)揭示了·OH、·SO和O参与了FeS@WBC/PDS体系中SDZ的降解。此外,基于密度泛函理论(DFT)和液相色谱-质谱(LC-MS)分析,提出了SDZ的四种可能降解途径,同时评估了降解中间体的毒性。本研究不仅引入了一种用于高效降解抗生素污染废水的新型催化体系,还为硫化铁-生物质复合催化剂的开发和应用提供了理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验